Реакторы ядерных энергетических установок для атомных подводных лодок. Инновационная технология строительства плавучих атомных электростанций Жидкометаллический и принцип работы


Введение
Если внимательно изучить историю советского ВМФ, то в глаза бросается именно количественные показатели - советский подводный флот был многочисленным. При этом видно, что основу советского флота составляли не суперподлодки, а простые и дешевые лодки массовых серий.

С середины 60-х по начало 80-х строительство трёх серий многоцелевых атомных лодок проекта 671- 671, 671РТ и 671РТМ общим количеством (15+7+26) 48 единиц - позволило насытить все океанские флоты современными подводными лодками. Шестьсот семьдесят первую серию дополняли ракетоносцы проектов 670А и 670М (11+6 = 17 единиц) спроектированные и построенные на заводе «Красное Сормово» в городе Горьком - небольшие однореакторные кораблики, считавшиеся самыми тихими лодками 2 поколения. Также флот получил весьма специфические Лиры - скоростные подлодки проекта 705 (7 единиц). Это позволило создать к середине 70-х группировку из 70 современных многоцелевых атомоходов.

Хотя лодки и отличалась посредственными характеристиками, благодаря своей многочисленности они обеспечивали Боевую службу ВМФ СССР во всех уголках планеты. Отметим, что именно по этому пути следуют США, строя огромные серии недорогих простых лодок типа Лос-Анджелес (62 лодки), а на данный момент - Вирджиния (план 30, в строю - 11).

Концепция бюджетной атомной подводной лодки для Российского ВМФ

Академик Спасский в своей статье в журнале «Военный парад» в 1997 году указал, что российскому флоту необходимо около ста подводных лодок. Ориентировочно нужно 15 стратегических ракетоносцев, 15-20 ракетных крейсеров с крылатыми ракетами и 30-40 ДЭПЛ. Остальные лодки (40-50 единиц) должны быть атомными многоцелевыми.

Проблема состоит в том, что в России подобных лодок нет. Строительство АПЛ проекта 971 и 945 прекращено и восстанавливать его не имеет смысла. АПЛ проекта 885 строятся небольшой серией - до 2020 года анонсирована серия 8 единиц. При этом их цена - от 30 до 47 миллиардов рублей и сроки строительства - одной лодки в 5-8 лет не позволяют иметь много таких лодок. Дизель-электрические лодки - которые сейчас модно называть неатомными - слишком малы и не способны ходить в моря надолго. Между лодкой водоизмещением 2000 тонн и лодкой 9500 тонн сейчас нет никаких промежуточных проектов.

Разговоры о необходимости подобной лодки шли давно, однако пока ничего конкретного так и не появилось. Например, предлагались варианты проекта 885 без ракетного отсека, однако быстро выяснилось, что удешевления/увеличения серии/сроков строительства такой проект не даст. Просто за те же деньги флот получит худшую лодку. Также рассматривался вариант «русского Рубиса» - т.е. небольшой лодки с полным электродвижением, однако подобные предложения отвергли сами французы, которые на данный момент строят атомную подводную лодку нормальных размеров. Европейский (например, английский) опыт тоже ничем помочь, не способен.

Поэтому я решил всё-таки самостоятельно разобраться, что же должна собой представлять подобная лодка.

По моему мнению, концепция бюджетной атомной подводной лодки должна быть следующая:


  1. Для снижения массогабаритных характеристик и стоимости атомной силовой установки - уменьшаем потребную скорость полного хода с 31-33 до 25 узлов, что даст снижение максимальной мощности силовой установки в 2,5 раза по сравнению с лодками 3 поколения. Т.е. до 20 тыс. л.с. Дело в том, что когда лодка идет на максимальной скорости она из-за грохота воды теряет как скрытность, так и возможность обнаруживать цели. При этом снижение мощности силовой установки уменьшить вес и потратить сэкономленный вес на усиление вооружения. В нашем случае - на ракетный отсек с 16 ракетами.

  2. Отказ от чрезвычайного количественного дублирования систем, а также от повышенного запаса плавучести (у нас он будет в районе 16%), и спасательной камеры.

  3. Уменьшение по сравнению с лодками 3 поколения максимальной глубины погружения с 600 до 450 метров, что позволит уменьшить массу корпуса.

  4. Полуторакорпусная архитектура - такая же, как на Северодвинске. Однокорпусную архитектуру имеют 2 и 3 отсеки - жилые и управления. Остальные - двухкорпусную.

  5. Вооружение - комбинированное - УВП для ракет и торпедные аппараты для торпед. Причём ТА двух калибров: большого - для боевых торпед и малого - для антиторпед и средств активной постановки гидроакустических помех.

  6. Торпедные аппараты имеют классическое для советского флота расположение - в верхней полусфере в носовой части. Поскольку сейчас лодка имеет не только сферическую антенну в носовой части, но и бортовые конформные антенны.

  7. Лодки должны строиться на заводах второго эшелона в Санкт-Петербурге, Нижнем Новгороде и Комсомольске-на-Амуре, срок строительства серийной лодки - не более трёх лет, стоимость 18-20 млрд. рублей.

Устройство атомной подводной лодки

Многоцелевая атомная подводная лодка проекта П-95 пред-на-зна-че-на для ве-де-ния борь-бы с вражеским судоходством, ко-ра-бель-ны-ми группировками про-тив-ни-ка, под-вод-ны-ми лод-ка-ми, на-не-се-ния уда-ров по бе-ре-го-вым объ-ек-там, осу-ще-ст-в-ле-ния мин-ных по-ста-но-вок, ве-де-ния разведки.

Так же как на лодках 3 поколения все основное обо-ру-до-ва-ние и бое-вые по-сты раз-ме-ще-ны в амор-ти-зи-ро-ван-ных зо-наль-ных бло-ках. Амор-ти-за-ция сильно снижает аку-сти-че-ское по-ле ко-раб-ля, а так-же по-зво-ля-ет обезопасить лодку от подводных взрывов.


Первый отсек - торпедный, в его верх-ней по-ло-ви-не рас-по-ло-же-ны ка-зен-ные час-ти тор-пед-ных ап-па-ра-тов и весь бое-за-пас на ав-то-ма-ти-зи-ро-ван-ных стел-ла-жах. Под ним расположено по-ме-ще-ние cо стой-ками ап-па-ра-ту-ры ра-дио-элек-трон-но-го воо-ру-же-ния, сред-ст-ва вен-ти-ля-ции и кон-ди-цио-ни-ро-ва-ния от-се-к. Под ними - трю-мы и ак-ку-му-ля-тор-ная яма.

Второй и третий отсеки - управления и жилые. На первой и второй па-лу-бах рас-по-ло-же-ны глав-ный ко-манд-ный пост, руб-ки, ап-па-ра-ту-ра бое-вой ин-фор-ма-ци-он-но-управ-ляю-щей сис-те-мы (БИ-УС); третья и четвертая па-лу-бы за-ня-ты жи-лы-ми, об-ще-ст-вен-ны-ми и ме-ди-цин-ски-ми по-ме-ще-ния-ми. В трюме - всевозможное оборудование, сред-ст-ва кон-ди-цио-ни-ро-ва-ния и об-ще-ко-ра-бель-ные сис-те-мы. Во втором от-се-ке раз-ме-ще-ны все подъ-ем-но-мач-то-вые уст-рой-ст-ва, в третьем - дизель-генератор.

Четвёртый отсек - ракетный. В нём расположены 4 прочные шахты в каждой из которых, находиться по 4 транспортно-пусковых контейнера с крылатыми ракетами. Также в отсеке расположено различное оборудование и кладовые.

Пятый отсек - реакторный. Сам реактор со своим оборудованием изолирован от ос-таль-ной лодки био-ло-ги-че-ской за-щи-той. Са-ма ППУ вме-сте с сис-те-мами под-ве-ше-на на кон-соль-ных бал-ках, за-де-лан-ных в пе-ре-бор-ки.

Шестой отсек - турбинный. Состоит из блоч-ной па-ро-тур-бин-ной ус-та-нов-ке и ав-то-ном-ны-ми тур-бо-ге-не-ра-то-ром и хо-ло-диль-ны-ми ма-ши-на-ми па-ро-тур-бин-ной ус-та-нов-ки. Блок че-рез амор-ти-за-то-ры сто-ит на про-ме-жу-точ-ной ра-ме, ко-то-рая че-рез вто-рой кас-кад амор-ти-за-то-ров за-кре-п-ля-ет-ся к специальным стойкам. Также в этом отсеке расположен на специальной амортизированной платформе обратимый электромотор малого хода и муфта позволяющая отсоединять ГТЗА.

Седьмой отсек - вспомогательных механизмов. Через не-го про-хо-дит ва-ло-про-вод с глав-ным упор-ным под-шип-ни-ком в носу и уплотнением гребно-го ва-ла в кор-ме. Отсек двух-па-луб-ный. Также в нем на-хо-дит-ся рум-пель-ное от-де-ле-ние, в котором раз-ме-ще-ны ру-ле-вые гид-рав-ли-че-ские ма-шины, а так-же рум-пе-ли и концы бал-ле-ров ру-лей.

Над вторым и третьим отсека-ми рас-положено ог-ра-ж-де-ние руб-ки и вы-движ-ных уст-ройств. В корме - четыре стабилизатора об-ра-зу-ют кор-мо-вое опе-ре-ние. Ос-нов-ной вход в ПЛ - че-рез ог-ра-ж-де-ние руб-ки. Кро-ме то-го, име-ют-ся вспо-мо-га-тель-ные и ре-монт-ные лю-ки над первым пятым и седьмым отсеками.

Основным движителем является семилопастный малооборотный винт диаметром 4,4 метра. Вспомогательным - две выдвижные колонки мощностью по 420 л.с. обеспечивающие скорость до 5 узлов.

От установки водомётов решено было отказаться из-за меньшего КПД и меньшей эффективности на малых скоростях



Силовая установка и оборудование

Лодка обладает характеристиками превышающими требования к четвёртому поколению подводных лодок. Т.е. соответствует поколению 4+.

Для обеспечения малой шумности в нашем проекте мы отходим от традиционной для советского флота тяги к силовым установками большой мощности с малым удельным весом. Многоцелевые лодки 2 поколения имели два реактора по 70 мВт и турбину мощностью 31 тысячу лошадиных сил, лодки третьего - 190 мВт и 50 тысяч лошадиных сил. При этом известно, что масса силовых установок 2 и 3 поколений - приблизительно одинакова и находится в районе 1000 тон

н (по разным оценкам от 900 до 1100 тонн) - отличается только удельный вес - масса одной лошадиной силы.

Так вот, мы сознательно идём на снижение мощности силовой установки и отказываемся от унификации с силовыми установками других типов. При этом кроме снижения мощности мы ещё и упрощаем схему силовой установки. Такой подход позволяет уменьшить габариты и размеры силовой, увеличив количество оружия, при этом благодаря повышению удельных характеристик - повышается агрегатная надёжность. Плюс поскольку силовая меньшей мощности - она меньше шумит, стоит дешевле и более надёжна.

Силовая установка «Кикиморы» включает:


  • один атомный реактор мощностью 70 МВт, с двумя парогенераторами, по одному насосу первого контура на каждом. Примерно такая схема атомного реактора используется на американских АПЛ типа Вирджиния. Реактор может работать в малошумном режиме с естественной циркуляцией на мощности 20% от номинальной, обеспечивая паром только турбогенератор лодки.

  • один ГТЗА с однокорпусной паровой турбиной и планетарным редуктором мощностью на валу 20000 л.с. При этом, при ходе под турбиной гребной электромотор работает как генератор, что позволяет отключить парогенератор и идти только под одним агрегатом.

  • обратимый гребной электромотор для малошумного хода мощностью 1500 кВт. Установлен перед турбиной, т.е. ГТЗА можно отключить и идти только под турбогенератором и электромотором, а можно наоборот включить ГТЗА и выключить турбогенератор, тогда гребной электромотор работает как генератор. Наличие только одного работающего устройства исключает резонансы и снижает шумность лодки.

  • один малошумный автономный турбогенератор мощностью 3500 кВт. При этом турбогенератор расположен по оси лодки плоскости лодки - под турбиной на одной с ней амортизированной платформе, только снизу. Такая схема - обеспечивает минимизацию шумов издаваемых генератором и позволяет получить при движении под электромотором на малошумном режиме - минимальную шумность. При этом и АТГ и ГТЗА используют каждый собственную арматуру - конденсаторы, холодильники, насосы и т.д. Включая запасы питательной воды. Что позволяет повысить надёжность силовой установки и автономность лодки.

  • один дизель-генератор мощностью 1600 кВт. Расположен в 3 отсеке. Одну большую аккумуляторную батарею в первом отсеке и 3 малых аккумуляторных батареи во 2, 3 и 7 отсеках.

Радиоэлектронное вооружение

Состав радиоэлектронного вооружения вооружения -классический. Лодка имеет на вооружении гидроакустический комплекс с несколькими антеннами и выдвижные устройства. Прием информации от всех устройств и управление оружием осуществляется интегрированной боевой информационно-управляющей системой.

Гидроакустический комплекс подводной лодки состоит из:


  • носовой сферической антенны диаметром 4,4 метра

  • двух бортовых низкочастотных конформных антенн

  • высокочастотной противоминной ГАС в носовой части рубки

  • буксируемой низкочастотной антенны

  • системы неакустического обнаружения надводных кораблей по кильватерному следу

Выдвижные устройства: (с носа в корму)


  • универсальный оптронный перископ - кроме нескольких оптических каналов оснащён лазерным дальномером и тепловизором.

  • многоцелевой комплекс цифровой связи - обеспечивает как наземную, так и космическую связь в нескольких диапазонах.

  • комплекс РЛС/РЭБ - представляет собой многофункциональную РЛС с фазированной антенной решеткой, способной обнаруживать как надводные так и воздушные цели, с дополнительной возможностью ставить помехи.

  • РДП - устройство для работы дизеля под водой.

  • цифровой комплекс пассивной радиотехнической разведки - вместо старых радиопеленгаторов. Имеет более широкий диапазон применения и при этом благодаря пассивному режиму работы - не засекается средствами РТР противника.

Вооружение

Как уже говорилось выше благодаря лёгкой силовой установке и облегченному корпусу лодка имеет чрезвычайно мощное для своих размеров вооружение составляющее 56 единиц оружия при стандартной загрузке. При этом противокорабельные ракеты и противолодочные ракето-торпеды - запускаются из УВП. Из торпедных аппаратов - запускаются торпеды.

Вооружение атомной подводной лодки состоит из:


  • 16 пусковых установок в 4-х прочных шахтах расположенных в районе миделя корабля. Это не «Ониксы», они не влезли по длине. В нашем случае используются в три раза более дешевые твердотопливные ПКР и ракето-торпеды вертикального пуска (они твердотопливные изначально). ПКР имеет массу 2,5 тонны, трансзвуковую скорость и дальность полёта 200 км при БЧ в 450 килограмм, противолодочная ракето-торпеда - имеет дальность 35 км (больше для лодки и не нужно) и боевую часть в виде 324-мм торпеды или подводной ракеты.

  • Четырех 605-мм торпедных аппаратов с боезапасом в 20 торпед - 4 в ТА и 16 на механизированных стеллажах. Увеличение калибра торпед связано с желанием повысить возможности торпеды без увеличения длины. Если обычная советская торпеда имеет калибр 533-мм и длину 7,9 метров, то наша торпеда при практически той же длине (8 метров) толще, тяжелее на тонну (т.е. весит три тонны). В боезапас ходят торпеды двух типов - первая имеет тяжёлую БЧ весом 800 кг (современные супертанкеры настолько огромны, что требуют больших БЧ), вторая - высокую скорость и дальность - 50 узлов/50 км.

  • Также вместо части торпед лодка может принимать до 64 мин различных типов.

  • Четырех 457-мм торпедных аппарата, предназначенных для запуска антиторпед, постановщиков гидроакустических помех, имитаторов и малых противоминных торпед. Боезапас - 4 торпеды в ТА и 16 в два эшелона в механизированных стеллажах. Вместо 16 малых торпед на стеллажи можно принять 4 большие торпеды. Мини-торпеда имеет длину 4,2 метра и массу 450 килограмм, дальность стрельбы до 15 километров, и массу БЧ 120 килограмм.

  • Шести ПЗРК «Игла» с запасом ракет.

Экипаж и обитаемость

Экипаж лодки состоит из 70 человек, в том числе 30 офицеров. Это практически соответствует лодкам проекта 971, где экипаж - 72-75 человек. На лодках проекта 671РТМ и на проекте 885 - около 100 человек. Для сравнения - на американских лодках типа «Вирждиния» экипаж 120 человек, а на Лос-Анджелесах вообще - 140. Весь лич-ный со-став раз-ме-щен в одноместных каю-тах и маломестных кубриках. Для прие-ма пи-щи и дру-гих ме-ро-прия-тий ис-пользует-ся две кают-компании - офи-цер-ская и мичманская. Лодка оснащена ме-ди-цин-ским блоком, ду-ше-выми ка-би-нами и сау-ной. Все жи-лые по-ме-ще-ния рас-по-ло-же-ны во 2-3-ом отсеках на 2 и 3 палубах.

Сравнение с конкурентами

По сравнению со своим прямым предшественником - проектом 671ртм - лодка стала короче почти на 12 метров, толще и потеряла 6 узлов скорости. За счёт снижения веса силовой установки (на 200-250 тонн) появилась возможность усилить вооружение отсеком с противокорабельными ракетами. При практически одинаковом подводном водоизмещении за счёт сокращения запаса плавучести (т.е. воды) на 900 тонн, увеличились обитаемые объемы что позволило поднять условия обитаемости. Шумность - снизилась радикально. Дальность обнаружения малошумных целей - тоже выросла. Автономность осталась на прежнем уровне, но условия размещения экипажа стали лучше, при этом лодка лучше в эксплуатации что позволит повысить коэффициент использования с 0,25 до 0,4.

По сравнению с одноклассником - проектом 885 - лодка проекта П-95 имеет в полтора раза меньшее водоизмещение и в полтора-два (в зависимости от количества кораблей серии) раза меньшую стоимость. Есть мнение что в малошумном режиме при движении под электромотором лодка будет тише даже проекта 885.

Проект П-95 смотрится весьма достойно и на фоне американской лодки типа Вирждиния. По крайней мере в дуэльных ситуациях наш корабль не будет не в чём уступать американскому.

В 50-х годах началась новая эра в подводном кораблестроении - при­менение для движения подводных лодок атомной энергии. По своим свойствам атомные источники энергии являются наиболее подходящи­ми для ПЛ, так как, не нуждаясь в атмосферном воздухе или в запасах кислорода, позволяют получать энергию практически неограниченно долго и в необходимом количестве.

Помимо решения проблемы в отношении длительного движения в подводном положении с высокой скоростью хода, использование атом­ного источника сняло ограничения по снабжению энергией таких отно­сительно емких ее потребителей, как приборы и системы жизнеобеспе­чения (кондиционеры, электролизеры и т. п.), навигации, гидроакусти­ки и управления оружием. Открылась перспектива использования ПЛ в арктических районах подо льдами. С внедрением атомной энергетики длительность непрерывного плавания лодок в подводном положении стала лимитироваться, как показал многолетний опыт, в основном, пси­хофизическими возможностями экипажей.

Вместе с тем с самого начала внедрения атомных энергетических установок (АЭУ) стали ясны и возникающие при этом новые сложные проблемы: необходимость обеспечения надежной радиационной защи­ты личного состава, повышение требований к профессиональной под­готовке обслуживающего АЭУ персонала, потребность в более разви­той, чем для дизель-электрической ПЛ, инфраструктуре (базирование, ремонт, доставка и перегрузка ядерного горючего, удаление отработан­ного ядерного топлива и т. д.). Позднее, по мере накопления опыта, вы­явились и другие негативные моменты: повышенная шумность атомных подводных лодок (АПЛ), тяжесть последствий аварий АЭУ и лодок с такими установками, сложность вывода из строя и утилизации отслу­живших свой срок АПЛ.

Первые предложения от ученых-атомщиков и военных моряков об использовании для движения лодок атомной энергии и в США, и в СССР стали поступать еще в конце 1940-х годов. Развертывание практических работ началось с создания проектов ПЛ с АЭУ и строительства назем­ных стендов и прототипов этих установок.

Первая в мире АПЛ была построена в США - «Nautilus» - и всту­пила в строй в сентябре 1954 г. В январе 1959 г. после завершения испытаний была принята в эксплуатацию ВМФ СССР первая отече­ственная АПЛ проекта 627. Основные характеристики этих АПЛ при­ведены в табл. 1.

С вводом в строй первых АПЛ практически без перерыва началось постепенное наращивание темпов их строительства. Параллельно шло практическое освоение применения атомной энергии в ходе эксплуа­тации АПЛ, поиск оптимального облика АЭУ и самих ПЛ.

Таблица 1


*Равно сумме надводного водоизмещения и массы воды в полностью заполненных цистернах главного балласта.
**Для американских АПЛ (здесь и далее) испытательная глубина, которая близка по смыслу к предельной.


Рис. 6. Первая отечественная серийная АПЛ (проект 627 А)


контуре атомного реактора. Наряду с водой, имеющей высокую степень очистки, которая была применена в реакторах первых АПЛ, была предпринята попытка применить для этой цели металл или сплав металлов, имеющих относительно низкую температуру плавления (натрий и др.). Преимущество такого теплоносителя виделось конструкторам, прежде всего, в возможности снизить давление в первом контуре, повысить тем­пературу теплоносителя и в целом получить выигрыш по габаритам ре­актора, что чрезвычайно важно в условиях его применения на ПЛ.


Рис. 7. Первая американская АПЛ «Nautilus»


Эта идея была реализована на второй после «Nautilus» американс­кой АПЛ «Seawolf», построенной в 1957 г. На ней был применен реак­тор S2G с жидкометаллическим (натриевым) теплоносителем. Однако на практике преимущества жидкометаллического теплоносителя ока­зались не столь существенными, как ожидалось, а по надежности и


Рис. 8. Первая отечественная АПЛ «Ленинский комсомол» (проект 627)


сложности эксплуатации этот тип реакторов существенно уступал водо-водяному реактору (с водой под давлением в первом контуре).

Уже в 1960 г. вследствие ряда выявившихся при эксплуатации непо­ладок реактор с жидкометаллическим теплоносителем на АПЛ «Seawolf» был заменен водо-водяным реактором S2WA, представлявшим собой улучшенную модификацию реактора АПЛ «NautiIus».

В 1963 г. в СССР в состав флота была введена АПЛ проекта 645, также оснащенная реактором с жидкометаллическим теплоносителем, в котором был использован сплав свинца с висмутом. В первые годы после постройки эта АПЛ успешно эксплуатировалась. Однако решительных преимуществ перед параллельно строящимися АПЛ с водо-водяными реакторами не по­казала. Вместе с тем эксплуатация реактора с жидкометаллическим тепло­носителем, особенно его базовое обслуживание, вызывала определенные сложности. Серийное строительство АПЛ этого типа не производилось, она осталась в единичном экземпляре и находилась в составе флота до 1968 г.

Вместе с внедрением на ПЛ АЭУ и непосредственно связанного с ними оборудования произошло изменение и других их элементов. Пер­вая американская АПЛ, хотя и имела большие размеры, чем ДПЛ, мало отличалась от них по внешнему виду: она имела штевневую носовую оконечность и развитую надстройку с протяженной плоской палубой. Форма корпуса первой отечественной АПЛ уже имела ряд характерных отличий от ДПЛ. В частности, ее носовой оконечности были приданы хорошо обтекаемые в подводном положении обводы, имеющие в плане очертания полуэллипса и близкие к круговым поперечные сечения. Ог­раждение выдвижных устройств (перископов, устройства РДП, антенн и др.), а также шахты люка и мостика были выполнены в виде обтекае­мого тела наподобие лимузина, откуда пошло название «лимузинная» форма, ставшая впоследствии традиционной для ограждения у многих типов отечественных АПЛ.

Для максимального использования всех возможностей по улучше­нию тактико-технических характеристик, обусловленных применени­ем АЭУ, были развернуты исследования по оптимизации формы корпу­са, архитектуре и конструкции, управляемости при движении в подвод­ном положении с высокими скоростями, автоматизации управления при этих режимах, по навигационному обеспечению и обитаемости в усло­виях длительного подводного плавания без всплытия на поверхность.

Ряд вопросов решался с использованием специально построенных опытных и экспериментальных неатомных и атомных ПЛ. В частности, в решении проблем управляемости и ходкости АПЛ важную роль сыгра­ла построенная в США в 1953 г. экспериментальная ДПЛ «Аlbасоrе», имевшая форму корпуса, близкую к оптимальной в отношении мини­мизации сопротивлению воды при движении в подводном положении (отношение длины к ширине составляло около 7,4). Ниже указаны ха­рактеристики ДПЛ «Albacore»:

Размерения, м:
длина..............................................................................................62,2
ширина.............................................................................................8,4
Водоизмещение, т:
надводное......................................................................................1500
подводное.....................................................................................1850
Энергетическая установка:
мощность дизель - генераторов, л. с.........................................1700
мощность электродвигателя *, л. с............................около 15000
число гребных валов......................................................................1
Скорость полного подводного хода, уз..............................................33
Испытательная глубина погружения, м............................................185
Экипаж, чел...........................................................................................52

* С серебряно-цинковой аккумуляторной батареей.

Эта ПЛ несколько раз переоборудовалась и длительное время ис­пользовалась для отработки гребных винтов (в том числе соосных про­тивоположного вращения), органов управления при движении с высо­кими скоростями, новых типов ТА и решения других задач.

Внедрение на ПЛ АЭУ совпало по времени с разработкой ряда прин­ципиально новых образцов вооружения: крылатых ракет (КР) для стрель­бы по берегу и для поражения морских целей, позднее - баллистичес­ких ракет (БР), средств дальнего радиолокационного обнаружения воз­душных целей.

Успехи в области создания БР наземного и морского базирования привели к пересмотру роли и места как сухопутных, так и морских си­стем вооружения, что нашло отражение и в становлении типажа АПЛ. В частности, постепенно утратили свое значение КР, предназначен­ные для стрельбы по берегу. В результате США ограничились пост­ройкой всего одной АПЛ «Halibut» и двух ДПЛ - «Grayback» и «Grow-ler» - с КР «Regulus», а построенные в СССР АПЛ с КР для поражения береговых целей были впоследствии переоборудованы в АПЛ только с торпедным вооружением.

В единичном экземпляре осталась и построенная в США в эти годы АПЛ радиолокационного дозора «Triton», предназначенная для дальне­го обнаружения воздушных целей с помощью особо мощных радиолокационных станций. Эта ПЛ примечательна еще и тем, что из всех аме­риканских АПЛ она была единственной, имевшей два реактора (все ос­тальные АПЛ США однореакторные).

Первый в мире пуск БР с подводной лодки был произведен в СССР в сентябре 1955 г. Ракета Р-11 ФМ была запущена с переоборудованной ДПЛ из надводного положения. С той же ПЛ спустя пять лет был произ­веден первый в СССР пуск БР из подводного положения.

С конца 50-х годов начался процесс внедрения БР на ПЛ. Сперва была создана малоракетная атомная ПЛ (габариты первых отечествен­ных морских БР на жидком топливе не позволили создать сразу много­ракетную АПЛ). Первая отечественная АПЛ с тремя стартующими из надводного положения БР была введена в строй в 1960 г. (к этому вре­мени было построено несколько отечественных ДПЛ с БР).

В США, базируясь на успехах, достигнутых в области морских БР, сразу пошли на создание многоракетной АПЛ с обеспечением старта ракет из подводного положения. Этому способствовала успешно реали­зуемая в те годы программа создания БР на твердом топливе «Polaris». Причем для сокращения срока строительства первого ракетоносца был использован корпус находящейся в это время в постройке серийной АПЛ


Рис. 9. Атомный подводный ракетоносец типа «George Washington»


с торпедным вооружением типа «Skipjack». Этот ракетоносец, назван­ный «George Washington», вступил в строй в декабре 1959 г. Первая отече­ственная многоракетная АПЛ (проект 667А) с 16 БР, стартующими из подводного положения, вступила в строй в 1967 г. В Великобритании первый атомный ракетоносец, созданный при широком использовании американского опыта, был введен в строй в 1968 г., во Франции - в 1974 г. Характеристики первых АПЛ с БР приведены в табл. 2

В годы, последовавшие с момента создания первых ПЛ, происходи­ло непрерывное совершенствование этого нового вида морского вооружения: увеличение дальности полета морских БР до межконтиненталь­ной, повышение темпа стрельбы ракетами вплоть до залповой, приня­тие на вооружение БР с разделяющимися головными частями (РГЧ), имеющими в своем составе несколько боевых блоков, каждый из кото­рых может наводиться на свою цель, увеличение на некоторых типах ракетоносцев боекомплекта ракет до 20-24.

Таблица 2


Сплав атомной энергетики и БР межконтинентальной дальности придал подводным лодкам в дополнение к их изначальному преимуще­ству (скрытности) принципиально новое качество - способность пора­жать цели в глубине территории противника. Это превратило АПЛ в важ­нейший компонент стратегических вооружений, занимающий в страте­гической триаде едва ли не главное место благодаря своей мобильности и высокой выживаемости.

В конце 60-х годов в СССР были созданы АПЛ принципиально но­вого типа - многоракетные подводные лодки - носители КР с подвод­ным стартом. Появление и последующее развитие этих АПЛ, не имевших аналогов в зарубежных ВМС , явилось реальным противовесом наиболее мощным надводным боевым кораблям - ударным авианосцам, в том числе и с атомными энергетическими установками.


Рис. 10. Атомный подводный ракетоносец (проект 667А)


На рубеже 60-х годов кроме ракетизации возникло еще одно важ­ное направление в развитии АПЛ - повышение их скрытности от об­наружения, в первую очередь другими ПЛ, и совершенствование средств освещения подводной обстановки для опережения против­ника в обнаружении.

Вследствие особенностей среды, в которой действуют ПЛ, в каче­стве определяющих факторов в проблеме скрытности и обнаружения вы­ступают обесшумливание ПЛ и дальность действия устанавливаемых на них гидроакустических средств. Именно совершенствование этих качеств наиболее сильно повлияло на формирование того технического облика, который приобрели современные АПЛ.

В интересах решения возникающих в указанных областях задач во многих странах были развернуты беспрецедентные по объему програм­мы научно-исследовательских и опытноконструкторских работ, вклю­чающих разработку новых малошумных механизмов и движителей, про­ведение по специальным программам испытаний серийных АПЛ, переоборудование построенных АПЛ с внедрением на них новых технических решений, наконец, создание АПЛ с энергетическими установками прин­ципиально нового типа. К числу последних относится, в частности, аме­риканская АПЛ «Тиllibее», введенная в строй в 1960 г. Эта АПЛ отлича­лась комплексом мероприятий, направленных на снижение шумности и повышение эффективности гидроакустического вооружения. Вместо главной паровой турбины с редуктором, применяемой в качестве двига­теля на серийно строящихся в это время АПЛ, на «Тullibее» была реали­зована схема полного электродвижения - установлены специальный гребной электродвигатель и соответствующей мощности турбогенера­торы. Кроме того, впервые для АПЛ был применен гидроакустический комплекс со сферической носовой антенной увеличенных размеров , а в связи с этим и новая схема размещения торпедных аппаратов: ближе к середине длины ПЛ и под углом 10-12° к ее диаметральной плоскости.

При проектировании «Тиllibее» планировалось, что она станет го­ловной в серии АПЛ нового типа, специально предназначенных для про­тиволодочных действий. Однако эти намерения не были реализованы, хотя многие из примененных и отработанных на ней технических средств и решений (гидроакустический комплекс, схема размещения торпедных аппаратов и др.) были сразу распространены на строящихся в 60-х годах серийных АПЛ типа «Thresher».

Вслед за «Тиllibее» для отработки новых технических решений по повышению акустической скрытности были построены еще две опыт­ные АПЛ: в 1967 г. АПЛ «Jack» с безредукторной (прямодействующей) турбинной установкой и соосными гребными винтами противополож­ного направления вращения (наподобие применяемых на торпедах) и в 1969 г. АПЛ «Narwhal», снабженная атомным реактором нового типа с повышенным уровнем естественной циркуляции теплоносителя пер­вого контура. Этот реактор, как ожидалось, будет отличаться понижен­ным уровнем шумоизлучений за счет снижения мощности циркуляци­онных насосов первого контура. Первое из этих решений не получило развития, а что касается нового типа реактора, то полученные результа­ты нашли применение при разработке реакторов для серийных АПЛ пос­ледующих лет постройки.

В 70-х годах американские специалисты вновь вернулись к идее ис­пользования на АПЛ схемы полного электродвижения. В 1974 г. было завершено строительство АПЛ «Glenard P. Lipscomb» с турбоэлектричес-кой ЭУ в составе турбогенераторов и электродвигателей . Однако и эта АПЛ не была принята для серийного производства. Характеристики АПЛ «Тиllibее» и «Glenard P. Lipscomb» приведены в табл. 3.

Отказ от «тиражирования» АПЛ с полным электродвижением гово­рит о том, что выигрыш по снижению шумности, если он и имел место на АПЛ этого типа, не компенсировал связанного с внедрением элект­родвижения ухудшения других характеристик, в первую очередь из-за невозможности создания электродвигателей требуемой мощности и при­емлемых габаритов и, как следствие, снижения скорости полного под­водного хода по сравнению с близкими по сроку создания АПЛ с турборе-дукторными установками.

Таблица 3


Во всяком случае, испытания АПЛ «Glenard P. Lipscomb» еще про­должались, а на стапеле уже началась сборка АПЛ «Los Angeles» с обыч­ной паротурбинной установкой - головной АПЛ в одной из самых круп­ных серий лодок в истории американского кораблестроения. Проект этой АПЛ создавался как альтернатива «Glenard Lipscomb» и оказался более удачным, вследствие чего и принят для серийного строительства.

Мировая практика подводного кораблестроения знает пока только одно исключение, когда схема полного электродвижения была реали­зована не на одной опытной, а на нескольких серийных АПЛ. Это шесть французских АПЛ типа «Rubis» и «Amethyste», введенных в строй в 1983-1993 годах.

Проблема акустической скрытности АПЛ не одновременно во всех странах стала доминирующей. Другим важным направлением совершен­ствования АПЛ в 60-е годы считалось достижение возможно большей скорости подводного хода. Так как возможности снижения сопротивле­ния воды движению за счет оптимизации формы корпуса были к этому времени в значительной мере исчерпаны, а другие принципиально но­вые решения этой задачи реальных практических результатов не дава­ли, для повышения скорости подводного хода АПЛ оставался один путь - увеличение их энерговооруженности (измеряемой отношением мощ­ности, используемой для движения установки, к водоизмещению). Вначале эта задача решалась напрямую, т.е. за счет создания и приме­нения АЭУ существенно увеличенной мощности. Позднее, уже в 70-х годах, проектанты пошли по пути одновременного, но не столь значи­тельного, увеличения мощности АЭУ и снижения водоизмещения АПЛ, в частности за счет резкого увеличения уровня автоматизации управле­ния и сокращения в связи с этим численности экипажа.

Практическая реализация этих направлений привела к созданию в СССР нескольких АПЛ, имеющих скорость хода свыше 40 уз, т. е. зна­чительно большую, чем у основной массы АПЛ, одновременно строя­щихся и в СССР, и на Западе. Рекорд скорости полного подводного хода - без малого 45 уз - был достигнут в 1969 г. при испытаниях отече­ственной АПЛ с КР проекта 661.

Еще одной характерной чертой развития АПЛ является более или менее монотонное по времени увеличение глубины погружения. За годы, истекшие с ввода в строй первых АПЛ, глубина погружения, как видно из приведенных ниже данных для серийных АПЛ последних лет пост­ройки, выросла более чем вдвое. Из боевых АПЛ наибольшую глубину погружения (около 1000 м) имела построенная в середине 80-х годов отече­ственная опытная АПЛ «Комсомолец». Как известно, АПЛ погибла от пожара в апреле 1989 г., но опыт, полученный при ее проектировании, строительстве и эксплуатации, является бесценным.

К середине 70-х годов постепенно вырисовались и на некоторое вре­мя стабилизировались подклассы АПЛ, различающихся назначением и составом основного ударного оружия:
- многоцелевые ПЛ с торпедным оружием, противолодочными ра­кетами, а позднее крылатыми ракетами, выстреливаемыми из торпед­ных аппаратов и специальных пусковых установок, предназначенные для противолодочных действий, уничтожения надводных целей, а так­же для решения других традиционных для ПЛ задач (минные постанов­ки, разведка и др.);
- стратегические подводные ракетоносцы, вооруженные баллисти­ческими ракетами для поражения целей на территории противника;
- подводные лодки-носители крылатых ракет, предназначенные, в основном, для уничтожения надводных кораблей и транспортов.

Сокращенное обозначение ПЛ этих подклассов: АПЛ, ПЛАРБ, ПЛАРК (соответственно английские аббревиатуры: SSN, SSBN, SSGN).

Приведенная классификация, как и всякая другая, является услов­ной. Например, с установкой на многоцелевые АПЛ шахт для запуска крылатых ракет в значительной мере стираются различия между АПЛ и специализированными ПЛАРК, а использование с АПЛ крылатых ра­кет, предназначенных для стрельбы по береговым объектам и несущих ядерные заряды, переводит такие ПЛ в разряд стратегических. В ВМС и ВМФ разных стран используется, как правило, своя классификация ко­раблей, в том числе и атомных ПЛ.

Строительство боевых ПЛ ведется, как правило, сериями по несколь­ко (иногда по несколько десятков) ПЛ в каждой на основе одного базо­вого проекта, в который по мере накопления опыта строительства и эк­сплуатации ПЛ вносятся сравнительно несущественные изменения. Для примера в табл. 4 приведены данные о серийном строительстве АПЛ в США Серии, как обычно принято, названы соответственно головной

Таблица 4


*Строилась тремя подсериями. Более крупная серия АПЛ из 77 единиц была реализована только при строительстве отечественных ракетоносцев, которые, хотя и отли­чаются TTX, базируются на одном проекте 667А.
** Строительство серии не закончено.
ПЛ, временные интервалы указаны по срокам закладки головной и вво­да в строй последней в серии ПЛ.

Достигнутый к середине 90-х годов уровень развития АЛЛ характе­ризуется приведенными в табл. 5 данными для трех американских АПЛ последних лет постройки.

Таблица 5


* Улучшенная модификация, головная АПЛ третьей подсерии.
** По другим данным - 2x30000 л.с.

Применительно к АПЛ (иногда и к ДПЛ) используется достаточно условное, но получившее распространение понятие «поколение». При­знаками, по которым АПЛ относят к тому или иному поколению, явля­ются: близость по времени создания, общность заложенных в проекты технических решений, однотипность энергетических установок и другого оборудования общекорабельного назначения, один и тот же кор­пусный материал и т. п. К одному поколению могут быть отнесены АПЛ различного назначения и даже нескольких следующих одна за другой серий. Переходу от одной серии ПЛ к другой, а тем более - переходу от поколения к поколению предшествуют всесторонние исследования с целью обоснованного выбора оптимальных сочетаний основных такти­ко-технических характеристик новых АПЛ.


Рис. 11. Новейшая российская многоцелевая АПЛ типа «Барс» (проект 971)


Актуальность такого рода исследований особенно возросла с появ­лением возможности (благодаря развитию техники) создания АПЛ, су­щественно различающихся скоростью хода, глубиной погружения, по­казателями скрытности, водоизмещением, составом вооружения и т. д. Выполнение этих исследований продолжается иногда на протяжении не­скольких лет и включает разработку и военно-экономическую оценку для широкого спектра альтернативных вариантов АПЛ - от улучшен­ной модификации серийно строящейся АПЛ до варианта, представляю­щего собой синтез принципиально новых технических решений в облас­ти архитектуры, энергетики, вооружения, корпусных материалов и т. д.

Как правило, эти исследования не ограничиваются только проек­тированием вариантов АПЛ, но включают также целые программы на­учно-исследовательских и опытно-конструкторских работ по гидроди­намике, прочности, гидроакустике и другим направлениям, а в неко­торых случаях, рассмотренных выше, также и создание специальных опытных АПЛ.

В странах, строящих АПЛ наиболее интенсивно, было создано три-четыре поколения этих кораблей. Например, в США из многоцелевых АПЛ к I поколению относят обычно АПЛ типов «Skate» и «Skipjack», к II - «Thresher» и «Sturgeon», к III - «LosAngeles». АПЛ «Seawolf» рассмат­ривают как представителя уже нового, IV поколения АПЛ ВМС США. Из ракетоносцев к I поколению относят лодки «George Washington» и «Ethan Allen», к II - «Lafayette» и «Benjamin Franklin», к III - «Ohio».


Рис. 12. Современный российский атомный подводный ракетоносец типа «Акула» (проект 941)


В общей сложности к концу 90-х годов в мире было построено (включая выведенные из строя в связи с устареванием и погибшие) около 500 АПЛ. Численность АПЛ по годам в составе ВМС и ВМФ разных стран приведена в табл. 6.

Таблица 6


Примечание. Над чертой - АПЛ, под чертой - ПЛАРБ.

Согласно прогнозу, общая численность АПЛ, которые будут нахо­дится в строю на 2000 г., составит (без АПЛ Российского ВМФ) около 130, из них - около 30 ПЛАРБ.

Скрытность атомных ПЛ и практически полная независимость от погодных условий делает их эффективным средством для проведения различного рода специальных разведьшательно-диверсионных операций. Обычно для этих целей используются ПЛ после окончания их службы по прямому назначению. Так, например, упомянутая ранее АПЛ ВМС США «Halibut», которая была построена как носитель крылатых ракет «Regulus», в середине 60-х годов была переоборудована для поиска (с помощью специальных носимых ею устройств) лежащих на грунте предметов, включая затонувшие ПЛ. Позднее на замену ей для анало­гичных операций была переоборудована торпедная АПЛ ВМС США «Раrсhе» (типа «Sturgeon»), в корпус которой была врезана секция дли­ной около 30 м и обеспечен прием на палубу специального подводного аппарата. АПЛ печально прославилась тем, что в 80-х годах участвовала в шпионской операции в Охотском море. Установив на подводный ка­бель специальное устройство, она, по данным, опубликованным в США, обеспечила прослушивание переговоров между советской военно-мор­ской базой на Камчатке и материком.


Рис. 13. Новейшая американская АПЛ «Seawolf»


Несколько ракетоносцев ВМС США типа «Lafayete» после вывода из состава сил стратегического назначения были переоборудованы в де­сантные ПЛ для скрытной доставки нескольких десятков морских пехо­тинцев. Для этого на палубе установлены прочные контейнеры с необ­ходимым оборудованием. Таким образом обеспечивается продление жиз­ни АПЛ, которые в силу различных причин уже не используются по своему первоначальному назначению.

За сорок с лишним лет существования АПЛ, вследствие аварий (по­жары, взрывы, разгерметизация магистралей забортной воды и др.) зато­нули две АПЛ ВМС США и четыре АПЛ ВМФ СССР, из которых одна дважды тонула в местах со сравнительно небольшими глубинами и оба раза была поднята средствами аварийно-спасательной службы. Осталь­ные затонувшие АПЛ имеют серьезные повреждения или практически полностью разрушены и лежат на глубинах полтора километра и более.

Был один случай боевого применения АПЛ против надводного ко­рабля: АПЛ «Conqueror» ВМС Великобритании во время конфликта из-за Фолклендских островов в мае 1982 г. атаковала и потопила торпедами принадлежащий Аргентине крейсер «G.Belgrano». Начиная с 1991 г. аме­риканские АПЛ типа «Los Angeles» несколько раз наносили удары кры­латыми ракетами «Tomahawk» по целям на территории Ирака. В 1999 г. удары этими ракетами по территории Югославии были нанесены с анг­лийской АПЛ «Splendid».

(1) Такая форма, характерная для дизель-электрических ПЛ, обеспечивала удовлетво­рительные характеристики при ходе в надводном положении.

(2) Pанее при наличии на ПЛ выступающей за пределы корпуса прочной рубки имено­валось ограждением рубки.

(3) Следует отметить, что в разное время ВМС США намеревались создать ПЛ с КР, однако всякий раз предпочтение отдавалось многоцелевым ПЛ.

(4) Ранее на АПЛ использовался набор ГАС разного назначения.

(5) Для строительства был использован проект серийных АПЛ типа «Thresher» и офи­циально АПЛ считалась седьмым кораблем серии.

(6) Были применены два электродвигателя предположительно мощностью по 11000 л. с. каждый, размещенных один за другим.

Вперед
Оглавление
Назад

Во второй половине 80-х годов XX века начался интенсивный процесс снятия с эксплуатации и вывода из состава ВМФ России атомных подводных лодок (АПЛ). Это было связано как с истечением сроков службы, так и с выполнением Российской Федерацией международных обязательств по сокращению вооружений. Основные результаты работ по утилизации трех поколений АПЛ представлены в таблице.

В настоящее время период активной утилизации АПЛ, когда ежегодно утилизировалось с формированием одно - или трехотсечных блоков более 10 АПЛ в год, закончился. АПЛ 1-го поколения практически полностью утилизированы (за исключением аварийных АПЛ). Второе поколение также в основном выведено из эксплуатации и утилизировано по принятой схеме. В течение последующих нескольких лет будет происходить вывод из эксплуатации и утилизация 2 – 5 АПЛ 2-го и 3-го поколений в год.

В настоящее время для решения проблем хранения реакторных отсеков (РО), обращения с радиоактивными отходами (РАО), образующимися при утилизации, необходимо создание дополнительной инфраструктуры, включающей строительство пунктов долговременного хранения реакторных отсеков (ПДХ), региональных центров по кондиционированию и хранению РАО, причальных стенок, реконструкция железнодорожных коммуникаций и т.д. Все это требует привлечения значительных финансовых и трудовых ресурсов. Масштаб решаемых задач иллюстрирует рис.1, на котором показана одна из площадок долговременного хранения реакторных отсеков утилизированных АПЛ.

Общая сумма затрат на строительство наземного хранилища на 120 РО в Сайда-губе превышает 300 млн. евро.

Рисунок 1. Площадка долговременного хранения реакторных отсеков.

Предполагается, что РО в ПДХ должны храниться в течение 75-100 лет, после чего должен быть окончательно решен вопрос об их утилизации. Учитывая, что массы РО АПЛ относительно не велики (около 1000 тонн), а ПДХ расположены далеко от сталеплавильных предприятий, их окончательная утилизация (окончательная разделка и переплавка стали) экономически сомнительна.
При решении вопроса об окончательной утилизации следует также учитывать, что в РО загружаются твердые радиоактивные отходы, образующиеся при утилизации АПЛ.

Значительная часть ядерных энергетических установок (ЯЭУ) выводимых из эксплуатации АПЛ 2-го и 3-го поколений не выработали назначенные ресурсные показатели и в основном находятся в хорошем состоянии.
В настоящее время в России развертывается программа строительства плавучих атомных электростанций малой мощности. Энергоблоки плавучих АЭС планируется создавать на базе судовых реакторных установок типа КЛТ-40 (прототипом являлся реактор ОК-900), хорошо зарекомендовавших себя при эксплуатации на атомных судах. Так, например, ЯЭУ атомного ледокола «Арктика» (реактор ОК-900) успешно эксплуатировалась с 1975 по 3 октября 2008 годы; за 176384 часа эксплуатации при средней мощности 63,1 МВт энерговыработка составила 11132456 МВт*часов. Следует отметить, что реакторная установка ледокола имела проектный ресурс 90000 часов при работе на номинальной мощности 170 МВт, и, следовательно, энерговыработка реактора могла бы составить 15,5 млн. МВт*часов.

ЯЭУ АПЛ принципиально ничем не отличаются от ледокольных установок. По существу, технология лодочных реакторов с водой под давлением создала основу и для атомных станций с корпусными реакторами.
«Мы всегда стремились создать атомные энергетические установки двойного назначения, ибо создание военной и гражданской техники на основе единой технологии очень эффективно для совершенствования и той и другой» – так считает академик Н.С. Хлопкин. Именно в ЯЭУ АПЛ были использованы технические решения, которые сегодня стали обязательными для большой атомной энергетики: активные зоны обладали обратными отрицательными связями по температурам топлива и замедлителя, а сами ЯЭУ имели защитное ограждение в виде прочного корпуса РО.

Эксперты из РНЦ «Курчатовский институт» при разработке концепции строительства подземных АЭС еще в 1993 году отмечали, что «благодаря малым габаритам и массе можно использовать корабельные решения по энергетическим установкам и в подземных атомных электростанциях. Комплексная автоматизация, герметичное исполнение оборудования, сведение к минимуму жидких и газообразных отходов, отработанность технологии и высокое качество изготовления благодаря выполнению большей части монтажных работ на машиностроительных заводах - все эти свойства очень хорошо вписываются в концепцию подземной АЭС».

Корпуса реакторов относятся к оборудованию с длительным циклом производства и являются наиболее дорогостоящими частями ЯЭУ. Единственным предприятием, которое в настоящее время производит подобное оборудование, являются «Ижорские заводы». Технологический цикл изготовление корпуса реактора в зависимости от типа реактора составляет 2-3 года. Учитывая не беспредельные производственные возможности «Ижорского завода», по мнению авторов не целесообразно загружать его дополнительными заказами для плавучих АЭС.
Также следует учитывать, что стоимость изготовления реакторов для плавучей АЭС составляет по разным оценкам от 40 до 60 % общей стоимости станции. Таким образом, при строительстве плавучих АЭС представляется экономически целесообразным использовать готовые РО выводимых из эксплуатации АПЛ.

Для данных целей в полной мере подходят эксплуатируемые или находящиеся на этапах вывода из эксплуатации и временного хранения на плаву АПЛ 2-го - 3-го поколений (общее количество таких АПЛ составляет примерно 140 единиц ). Использование уже сформированных в процессе утилизации АПЛ 1-3 отсечных РО подлежит отдельному рассмотрению в каждом конкретном случае.
ЯЭУ гражданского и военного назначения имеют незначительные конструктивные различия. Предполагаемые к утилизации АПЛ 2-го поколения имеют по 2 реактора тепловой мощностью 90 МВт, АПЛ 3-го поколения − по 1-2 реактора тепловой мощностью 180 МВт.

В докладе будет рассмотрена одна из составляющих, оказывающая существенное влияние на безопасность использования ЯЭУ утилизируемых АПЛ – охрупчивание корпусной стали реактора под воздействием потока быстрых нейтронов. Материал корпусов реакторов гражданского и военного назначения одинаков – сталь типа 15Х2МФАА.

Работа ЯЭУ на парциальных нагрузках существенно уменьшает выработку ресурса корпуса реактора, который определяется сдвигом критической температуры хрупкости материала корпуса, обусловленной, главным образом, флюенсом быстрых нейтронов. Исследования основного металла и металла сварных швов корпусов реакторов атомного ледокола «Ленин», выполненные после снятия его с эксплуатации при выработке ресурса 106700 часов, подтвердили возможность продления проектного часового ресурса корпусов реакторов, работавших на мощностях меньше номинальной.

Для исследования возможности применения ЯЭУ утилизируемых АПЛ авторами была проведена оценка охрупчивания корпусов реакторов АПЛ с использованием стандартных методик и эксплуатационных параметров, достигнутых реакторами ледокола «Арктика».
Критическая температура хрупкости материала корпуса реактора (Тк) является фактором, ограничивающим срок его службы, и определяется суммой

ТК = ТК0 + ΔТТ + ΔТN + ΔТF, (1)

где ТК0 – критическая температура хрупкости материала в исходном состоянии,
ΔТТ – сдвиг критической температуры хрупкости вследствие температурного старения;
ΔТN – сдвиг критической температуры хрупкости вследствие циклической повреждаемости (для судовых ЯЭУ ΔТN не является определяющим фактором, и может быть принят равным нулю);
ΔТF – сдвиг критической температуры хрупкости вследствие нейтронного облучения.

Используя стандартные зависимости, рассчитаем величину флюенса быстрых нейтронов Fn на корпусе реактора ледокола «Арктика»:

Fn = F0*(ТF/AF)3 = 1018*(110/23)3 = 1,1 1020 см - 2 , (2)

где AF – коэффициент охрупчивания нижнего сварного шва;
F0 = 1018 см - 2 – пороговое значение флюенса;
ТF = 110 0С – сдвиг критической температуры вязко-хрупкого перехода в результате облучения.

В этом случае средняя плотность потока быстрых нейтронов на корпусе реактора за время эксплуатации τ составит

φб = Fn/τ = 1,1 1020/176384 3600 = 1,73 1011см – 2c – 1, (3)

и, следовательно, время работы реактора на средней за время эксплуатации мощности составляет

τ = Fn/φб 3600 = 1,1 1020/1,73 1011 3600 = 176622 часа. (4)

Полученный результат хорошо согласуется с зарегистрированным временем работы реактора ледокола «Арктика», что означает – сдвиг критической температуры вязко-хрупкого перехода был принят правильно. Опираясь на эти данные и учитывая, что плотности потоков быстрых нейтронов в реакторах ледоколов и АПЛ примерно одинаковы, можно предположить, что реакторы утилизируемых АПЛ способны достигать энерговыработки 11 – 12 миллионов МВт*часов и больше.

ЯЭУ утилизируемых АПЛ, по мнению специалистов, далеки от выработки ресурсных показателей. Специфика эксплуатации АПЛ заключается в том, что доля режимов работы ЯЭУ на нагрузках, близких к максимальным, невелика. Кроме этого, начиная с 90-х годов ХХ столетия, АПЛ не так часто выходили в море.
Учитывая, что номинальная мощность реакторов АПЛ 2-го поколения составляет 90 МВт, средняя мощность за время эксплуатации большинства из них не превышала 30%, т.е. 27 МВт, а время работы на мощности составляло около 40000 часов, получим энерговыработку порядка 1,08 млн. МВт*часов.

Считая плотности потоков нейтронов в реакторах ледоколов и АПЛ близкими по значению, и также полагая, что значения плотностей нейтронных потоков пропорциональны мощности реакторов, а, следовательно, флюенс быстрых нейтронов на корпус реактора пропорционален его энерговыработке, имеем значение флюенса при энерговыработке 1,08 млн. МВт*часов Fn = 1,07∙1019 см – 2. При этом сдвиг критической температуры вязко-хрупкого перехода для материала корпусов реакторов АПЛ составит

ТF = Aw*(Fn/F0)1/3 = 23*(1,07∙1019/1018)1/3 ≈ 49,5 0С. (5)

Следовательно, остаточный ресурс корпуса реактора АПЛ по флюенсу быстрых нейтронов на корпусе составляет 10 - 11 миллионов МВт*часов, а возможно, и более.

Расчет флюенса быстрых нейтронов на корпусе реактора сопряжен с определенными трудностями:
− в конце кампании активной зоны происходит увеличение плотности потока нейтронов;
− нет точной информации о плотности потока нейтронов в реакторе (особенно быстрых нейтронов);
− за время эксплуатации реактора в нем «сжигается» несколько активных зон, что приводит к накоплению ошибки в определении флюенса;
− в судовые реакторы не загружаются образцы-свидетели, позволяющие судить об изменении физико-механических свойств корпусной стали.

Точнее чем флюенс быстрых нейтронов, в результате эксплуатации определяется энерговыработка реактора. Поэтому значительный интерес представляет зависимость сдвига критической температуры в результате нейтронного облучения от энерговыработки реактора. Очевидно, что эта зависимость будет иметь такой же вид

ТF = Aw*(W/W0)1/3, (6)

где Aw – коэффициент охрупчивания, обусловленный энерговыработкой,
W – достигнутая энерговыработка,
W0 – пороговая энерговыработка.

Данная зависимость справедлива в диапазоне изменения энерговыработки от 1*106 МВт*час до 3*107 МВт*час. Так как ректоры всех судовых ЯЭУ изготавливаются по одинаковой технологии из стали 15Х2МФАА и имеют примерно одинаковую толщину железо-водной защиты корпуса, то при проведении расчета принималось, что Aw = 49,5.

Полученная зависимость позволяет прогнозировать сдвиг критической температуры хрупкости в результате нейтронного облучения материала корпусов судовых реакторов от энерговыработки (рис. 2). Анализ кривой показывает, что судовые реакторы способны достигать энерговыработки 15,5*106 МВт*часов, при этом сдвиг критической температуры хрупкости не превысит 125 0 С.

Рисунок 2. Прогноз сдвига критической температуры хрупкости от нейтронного облучения для судовых реакторов.

Таким образом, остаточный ресурс ЯЭУ 2-го поколения может достигать максимальной величины 14,4 106 МВт*часов (реально около 10*106 МВт*часов). Отсюда следует, что при использовании ЯЭУ утилизируемых АПЛ 2-го поколения в составе энергомодулей плавучих АЭС, работающих с КИУМ (коэффициент использования установленной мощности) = 0,7, они смогут работать около 25 лет до утилизации.

Если считать, что для АПЛ 3-го поколения средний уровень мощности составляет как на АПЛ 2-го поколения приблизительно 30 % или 54 МВт, а время работы на этой мощности около 30000 часов, то получим энерговыработку 1,62*106 МВт*часов. Тогда остаточный ресурс корпусов этих реакторов по энерговыработке составит около 13,9*106 МВт*часов. При работе на плавучих АЭС с КИУМ = 0,7 возможное время эксплуатации этих реакторов составит примерно 110 тысяч часов или примерно12,5 лет.

Таким образом, основной фактор, определяющий ресурс работы материала корпуса реактора – сдвиг критической температуры хрупкости в результате нейтронного облучения реакторов АПЛ, не является основанием для отказа от использования реакторных установок утилизированных АПЛ в качестве энергетических модулей для плавучих АЭС.
Примерная методология решения этого вопроса может быть представлена схемой на рисунке 3.

Рис. 3. Методологическая схема решения вопроса об использовании ЯЭУ АПЛ в качестве энергетического модуля на плавучей АЭС.

Кроме того, высокая надежность и живучесть ЯЭУ подтверждена как многолетним опытом эксплуатации, так и имевшей место гибелью подводных лодок. Реакторы всех затонувших АПЛ были надежно заглушены, при этом ни разу не было зарегистрировано радиационного загрязнения акватории. Последним примером тому служит катастрофа АПЛ «Курск» (август 2000г.).

По достижении предельной энерговыработки характеристики ударной вязкости металла корпусов реакторов могут быть восстановлены путем сухого низкотемпературного отжига, технология которого разработана и используется в нашей стране уже многие годы. C 1987 по 1992 годы был выполнен восстановительный отжиг 12 корпусов реакторов ВВЭР-440 в России, Германии, Болгарии и Чехословакии. При одном из первых отжигов на материале сварного шва, облученном до флюенса 1020 см-2 была исследована зависимость восстановления критической температуры (Тк) от температуры отжига при времени отжига 150 часов. В ходе экспериментов было установлено, что практически во всех случаях ударная вязкость восстанавливалась до значений, соответствующих необлученному материалу, и максимальное восстановление свойств облученной корпусной стали 15Х2МФАА при температуре отжига 460 – 4700С происходит за время, равное 170 часам.

Планируемый ресурс реакторов КЛТ-40С, которые планируется устанавливать на плавучих АЭС, составляет 40 лет, причем один раз в 10 лет станции должны буксироваться на судостроительные предприятия для ремонта. Если на плавучей АЭС будут применены РО утилизированных АПЛ, то во время планового ремонта может быть выполнен отжиг корпусов реакторов, в результате чего временной ресурс будет удвоен и практически совпадет с ресурсом вновь построенных корпусов реакторов КЛТ-40С.

Отдельный вопрос – это возможность использования паротурбинной установки (ПТУ) утилизируемой АПЛ. Тепловая схема ПТУ АПЛ отличается от проектируемых на плавучей АЭС отсутствием термического деаэратора питательной воды (установка которого не представляет затруднений) и большей частотой вращения главной турбины. Вопрос о варианте использования главной турбины может решаться двояко. Во-первых, уменьшение частоты вращения главной турбины до 3000 оборотов в минуту несколько снизит ее мощность, но позволит ей работать совместно с турбогенератором, вырабатывающим ток частотой 50 Герц. Избыток пара при этом можно использовать для передачи на берег тепловой энергии через промежуточный теплообменник.

Во-вторых, использование главной турбины во всем диапазоне частот вращения потребует применения статических преобразователей частоты для выдачи в сеть электроэнергии требуемого качества. В обоих вариантах использования главной турбины можно отказаться от использования вспомогательных турбогенераторов, заменив их трансформаторами собственных нужд плавучих АЭС. Вспомогательные турбогенераторы заменяются дизельгенераторами, мощность которых обеспечивает расхолаживание обеих установок и ввод в работу одной из ЯЭУ. Это позволит использовать излишки пара для выработки тепловой энергии. Кроме того, при использовании ЯЭУ АПЛ на плавучем энергоблоке не будет необходимости в применении паровых холодильных машин, в результате чего образуются излишки пара, который можно использовать как в деаэраторе, так и для выработки тепловой энергии с передачей ее на берег. Таким образом, оборудование ПТУ утилизируемых АПЛ также может быть использовано в составе энергетического модуля на плавучих АЭС.

Утилизируемые атомные подводные лодки 2-го и 3-го поколений имеют широкий диапазон мощностей реакторов от 70 до 190 МВт и главных турбин от 15 до 37 МВт. Это позволяет подобрать для использования на плавучих АЭС требуемые мощности главного энергетического оборудования.

Стоимость строительства плавучей АЭС «под ключ» оценивается более чем в $150 миллионов , при этом она, приблизительно на 80% определяется стоимостью ЯЭУ и ПТУ . Использование ЯЭУ утилизируемых АПЛ позволит заметно уменьшить эту стоимость.

Масса РО двух реакторной установки утилизируемых АПЛ 2-го поколения составляет около 1200 тонн, а 3-го – около 1600 тонн. Это позволяет использовать реакторные и турбинные отсеки в качестве единого энергетического модуля, монтируемого на плавучей АЭС. В этом случае мы получим ранее построенную и оплаченную ЯЭУ в защитной оболочке, функцию которой выполняет прочный корпус АПЛ. Один из возможных вариантов такой конструкции плавучей АЭС показан на рис. 4.

Рисунок 4. Вариант размещения энергетического модуля (реакторного отсека АПЛ) на плавучих АЭС.

Использование предлагаемой технологии неизбежно столкнется с рядом проблем, которые необходимо решать уже в ближайшее время. К таким проблемам можно отнести:
− отсутствие процедуры перевода ЯЭУ военного назначения в ЯЭУ мирного использования атомной энергии;
− отсутствие анализа соответствия ЯЭУ АПЛ 2-3 поколений требованиям нормативных документов Ростехнадзора и Минздравсоцразвития по плавучим АЭС;
− необходимость обоснования остаточного ресурса, а также возможность продления назначенных ресурсных показателей основного оборудования ЯЭУ по каждой выведенной из эксплуатации АПЛ;
− необходимость изменения конструкции строящихся или проектируемых плавучих АЭС.

Для решения указанных проблем необходимо проведение значительного комплекса НИОКР.
Также следует отметить, что использование РО утилизируемых АПЛ не исчерпывается их применением для плавучих АЭС. Возможными вариантами применения может быть их использование при строительстве подземных АЭС.

Выводы:
1. Предлагаемая инновационная технология использования ЯЭУ утилизируемых АПЛ позволит:
− значительно сократить затраты на строительство плавучих АЭС и сократить время их строительства и окупаемости;
− снизить затраты на утилизацию АПЛ;
− значительно уменьшить количество радиоактивных отходов и затраты на обращение с ними;
− в полной мере использовать потенциал ЯЭУ АПЛ:
− в процессе эксплуатации ЯЭУ утилизируемых АПЛ в составе плавучей АЭС осуществить финансирование будущей утилизации РО.
2. Для внедрения указанной технологии необходимо уже в ближайшее время развернуть комплекс НИОКР, позволяющий научно обосновать техническую возможность использования РО утилизируемых АПЛ для проектируемых плавучих АЭС.

Далекий северный город Северодвинск, расположенный в европейской части России, известен как колыбель атомного кораблестроения России. На предприятии "Севмаш", которое находится в материковой части города, за полвека было построено около 165 подводных лодок. Из них 128 - атомные.

Многие из этих подводных лодок здесь же, в Северодвинске, заканчивали свой век. На соседнем с "Севмашем" предприятии "Звездочка" были утилизированы 44 атомные подводные лодки. Операция по утилизации АПЛ и надводных кораблей с атомным сердцем - это отдельная, сложная с инженерной точки зрения операция.


Взят у kuleshovoleg в Об утилизации атомных кораблей - из первых уст

В стране не так много предприятий, которые способны проводить данные работы. О том, как она происходит, и для чего кораблям необходима эта процедура, мы попросили рассказать начальника отдела технологий ремонта корпусных конструкций и покрытий Научно-исследовательского проектно-технологическое бюро "Онега" (НИПТБ "Онега") Сергея Добровенко.

2.Сергей Добровенко / НИПТБ "Онега"

Сергей Вячеславович, расскажите нам о себе. Давно ли Вы связаны с кораблестроением? Чем занимаетесь в НИПТБ "Онега"?

С кораблестроением связан со времен Севмашвтуза (ныне - ИСМАРТ САФУ). Я там учился и одновременно работал по системе "завод-втуз" на судоремонтном предприятии "Звездочка" сборщиком корпусов металлических судов в цехе № 15. По окончании учебы, в 1996 году, устроился на работу в НИПТБ "Онега". Начинал с инженера-технолога. Сейчас занимаю должность начальника отдела технологий ремонта корпусных конструкций и покрытий.

Наш отдел разрабатывает технологии ремонта корпуса, корпусных конструкций и покрытий. Кроме того, одно из направлений деятельности НИПТБ "Онега" - разработка технологий утилизации атомных подводных лодок, надводных кораблей с ядерной энергетической установкой, а также судов атомного технического обеспечения. В основном, это работы, связанные с разрезкой корпусных конструкций и демонтажом систем и оборудования.

Мы занимаемся разработкой всевозможных технологий по разрезке корпусов, металлических конструкций, процессу демонтажа корпусных конструкций, формированию блоков реакторных отсеков.

3. Установленная как памятник рубка от атомной подводной лодки проекта 667АТ

- Вы упомянули о работе на "Звездочке". На каком заказе начинали работать? Так сказать - Ваш первый корабль

Если говорить о первом корабле, на котором работал, то это была "Груша", проект 667АТ. На ней я занимался ракетными нишами. А если говорить о разрезке, то первый корабль, в утилизации которого я принимал участие, это "азуха" - атомная подлодка проекта 667А.

4. Атомная подводная лодка К-222 (Проект 661 "Анчар") перед утилизацией / Центр судоремонта "Звёздочка"

- Давайте перейдем к главному вопросу. Что из себя представляет процесс утилизации?

Утилизация атомной подводной лодки и утилизация надводного корабля отличаются друг от друга, но суть, тем не менее, одна и та же. Для начала разрабатывается так называемый комплект проектно-организационной документации по утилизации корабля, в который входит определенный объем документов, необходимый и достаточный для приведения лодки в безопасное состояние и формирования реакторного отсека. Эти документы согласовываются с соответствующими надзорными органами и заинтересованными организациями.

Процесс утилизации начинается с вывода корабля из эксплуатации. Флот передает корабль промышленности. Разрабатывается комплект документов, согласовывается, утверждается, получает экспертные заключения надзорных органов, и только после этого начинается процедура физической утилизации. Корабль поступает на предприятие, которое будет проводить работы по утилизации. Становится к причальной стенке. В том случае, если на нем находится отработавшее ядерное топливо (ОЯТ), оно выгружается на береговых комплексах выгрузки ОЯТ. Реактор приводится в безопасное состояние.

5. Процесс утилизации атомной подводной лодки "Борисоглебск" (Проект 667БДР) / Центр судоремонта "Звёздочка"

После выгрузки ОЯТ начинается физическая разделка корабля. Частично конструкции демонтируются на плаву для того, чтобы разгрузить доковый вес заказа, а также ускорить процесс утилизации. После разгрузки корабль ставится на твердое основание: в плавдок, док-камеру или на стапель. После того, как корабль поставлен на доково-опорное устройство, начинается процесс демонтажа корпусных конструкций, систем и оборудования. ОЯТ выгружается, затем на спецэшелоне отправляется на предприятия-переработчики, такие как "Маяк". Радиоактивные отходы, образующиеся при этом, остаются на предприятии и подлежат переработке или временному хранению.

6. Процесс утилизации атомной подводной лодки "Борисоглебск" (Проект 667БДР)

Первым делом демонтируются корпусные конструкции, такие как надстройка корабля или рубка подводной лодки. Они крупными секциями выгружаются с заказа, затем разрезаются на транспортные секции, после чего перевозятся на участки разделки металлолома и оборудования, где данный габаритный лом отгружается на металлургические комбинаты.

7. Процесс утилизации атомной подводной лодки / Центр судоремонта "Звёздочка"

В процессе утилизации с корабля выгружается все оборудование, которое тоже разделывается на специализированных площадках, или его забирают себе на разделку специализированные предприятия. Металлолом разделяют по различным маркам и тоже сдают на предприятия-переработчики.

8. Метал, который остался от утилизации атомной субмарины, в дальнейшем уходит на переработку / Центр судоремонта "Звёздочка"

Также при утилизации образуется большое количество различных токсичных промышленных отходов: остатки лакокрасочных, резиновых и прочих покрытий, отделки судовых помещений и т.п., которые подлежат переработке или отправляются на захоронение на полигон.

9. Формирование трёхотсечного блока атомной подводной лодки К-222 (Проект 661 "Анчар") / Центр судоремонта "Звёздочка"

После того, как носовой и кормовой блоки АПЛ утилизированы и переработаны, начинается формирование реакторных блоков. На судостроительных предприятиях их формируют в трехотсечные блоки - реакторный отсек и два дополнительных отсека по бокам, так называемых поплавка, которые обеспечивают положительную плавучесть этого блока. После формирования блоки буксируют в пункты длительного хранения реакторных отсеков, где отсеки-поплавки отрезают и оставляют отсек с реактором на хранение.

10. Трёхотсечный блок атомной подводной лодки во время перевозки к пункту долговременного хранения реакторных отсеков / РОСАТОМ

11. Пункт долговременного хранения реакторных отсеков / РОСАТОМ

Вы рассказали про утилизацию подводных лодок. А как обстоят дела с утилизацией крупных надводных кораблей, таких как ССВ-33 "Урал", корпус которого до сих пор не утилизирован, но вся надстройка спилена. Какие-то сложности?

Работы по утилизации "Урала" до сих пор ведутся. Они идут медленно из-за отсутствия финансирования. Также длительное время разрабатывался проект по утилизации этого корабля, и долгое время решался вопрос по варианту формирования реакторного отсека.

Так как у таких кораблей массогабаритные характеристики значительно выше, чем у атомных подлодок, был принят такой вариант утилизации - демонтируются конструкции надстройки до верхней палубы, а затем из реакторного отсека выгружается реактор, который помещается в спецупаковку. В случае необходимости корабль разрезают на две части для того, чтобы можно было его поставить на твердое основание.

12. Большой атомный разведывательный корабль ССВ-33 "Урал" / Википедия.

- А когда начнется утилизация "Кирова"?

На сегодняшний день НИПТБ "Онега" разрабатывает комплект документов по его утилизации. Согласуем его, и далее, насколько я знаю, финансирование работ будет производиться на деньги Госкорпорации "Росатом". Насчет сроков неизвестно, это зависит от тендера, но, скорее всего, начало утилизации будет положено в следующем году.

13. Тяжелый атомный ракетный крейсер "Киров".

Весной на портале госзакупок появилась запись о проведении тендера на демонтаж крышек шахт с атомной подводной лодки ТК-17 "Архангельск" (проект 941). Сообщалось о начале работ в августе этого года. Началась ли какая работа в этом направлении?

Честно говоря, не обладаю такими сведениями. Но, наверное, начнут в ближайшее время. Если речь идет о демонтаже крышек, то это будет так называемая процедура по договору СНВ - демонтаж крышек и приведение в безопасное состояние пусковых установок. Считаю, что эта работа несложная, и будет сделана быстро.

14. Атомные подводные лодки проекта 941 в ожидании утилизации.

А как обстоят дела с утилизацией судов "Атомфлота" и судами технического обеспечения? Насколько это отличается от утилизации подлодок и кораблей? Слышал, что с "Лепсе" были определенные сложности.

Утилизация "Лепсе" - сложный проект. Мы разрабатывали комплект документов на него, я принимал непосредственное участие в разработке технологий по утилизации корпусных конструкций и формировании блок-упаковок, в которые будут закатаны наиболее радиационно-опасные блоки судна. Эти части встанут в упаковку, которую затем отправят в пункт длительного хранения реакторных отсеков в губе Сайда.

Сложности существуют всегда и везде, особенно на таких судах как "Лепсе", где находятся высокоактивные отходы, с которыми невозможно было что-то сделать, кроме как оставить их в части этого судна для дальнейшего длительного хранения.

(Лепсе - судно-заправщик атомного ледокольного флота России. Принадлежит ФГУП «Атомфлот». В 1988 году судно выведено из эксплуатации, а в 1990 году переведено в категорию стоечных судов. В пеналах и кессонах хранилища отработавшего ядерного топлива (ОЯТ) судна размещено 639 отработавших тепловыделяющих сборок (ОТВС), часть из которых повреждена. - Прим. ред.)

Вопросы безопасности были очень серьезные и тщательно прорабатывались, чтобы не допустить чрезвычайных ситуаций и переоблучения людей.

15. "Лепсе" - судно-заправщик атомного ледокольного флота России.

- Какой заказ в Вашей работе был особенно сложен?

Много сложных кораблей было в практике. Сложности были с "Курском". Мы разрабатывали на него проект документов. С "Лепсе" сложности были только из-за его состояния. Также "Золотая рыбка" (АПЛ проекта 661 "Анчар") была сложная - титановый корабль в аварийном состоянии.

Но самыми сложными были атомные подводные лодки, находившиеся на Дальнем Востоке, так называемые "чажемские". Две аварийные подлодки проекта 675 зав. № 175 и проекта 671 зав. № 610 с повышенным радиационным фоном. Они много лет стояли в отстое в бухте Павловского, а затем их утилизировали в док-камере ДВЗ "Звезда". Для их утилизации в доке сделали специальные поддоны под все основание, чтобы не разнести загрязненные элементы. На этих кораблях были очень высокие активности, что представляло большую сложность.

Разрабатывали документы так, чтобы демонтаж конструкций, систем и оборудования выполнялся с наименьшим вредом для человека, так как внутри могли находиться остатки жидких радиоактивных отходов.

- Как вы относитесь к масштабной утилизации подлодок первого и второго поколения в 90-х и 2000-х годах?

Надо понимать, что все эти корабли выработали свой ресурс, особенно первое и второе поколение. Поменялась геополитика и задачи государства, да и новая техника получает свое развитие. А те корабли выработали себя полностью, и продолжать их эксплуатацию было совсем нецелесообразно, многие из них находились в аварийном состоянии. Я считаю, что правильнее наращивать новые группировки более современных кораблей, а не поддерживать устаревшие морально. Кроме того, существовала угроза экологической безопасности. Они приходили в такое состояние, что герметичность легкого корпуса практически совсем отсутствовала. Также была угроза их затопления, что повлекло бы еще больше проблем.

Своевременная утилизация необходима - это рационально. Все должно вовремя строиться и вовремя утилизироваться. Если у вас есть машина, вы же не будете сто лет ездить на ней и постоянно ее ремонтировать - больше проблем будет, чем удовольствия от ее вождения.

У Вас есть информация по подъему затопленных в морях подлодок и реакторов? Последнее время в СМИ часто мелькает информация по их подъему и утилизации, а до действий так и не доходит.

На сегодняшний день пока это только разговоры. Подъем этих лодок - очень дорогостоящее занятие. Некоторые из них лежат на больших глубинах. В свое время поднимали "Курск", он лежал на небольшой глубине, а тот же "Комсомолец" лежит на глубине около полутора тысяч метров, подъем его на поверхность - большая проблема.

Разговоры о подъеме этих лодок часто звучат на различных конференциях и совещаниях, но пока я не слышал о реальных перспективах подъема затонувших атомных подводных лодок.

- От лодок к семье. Есть ли у Вас дети? Если да, то по Вашим стопам пошли?

Мой сын сейчас окончил школу и поступил в Архангельский медицинский университет. С первого сентября начнет там обучение. Не по моим стопам пошел.

- А есть ли у Вас любимая подлодка? За красоту, какое-либо качество или за что-то другое?

Мне очень нравятся "Акулы", 941-й проект. Кроме нас, такой мощный и большой корабль никто не мог построить. В современных условиях они, может быть, и не нужны, но это - шедевр.

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

Первая американская и советская атомные подводные лодки (АПЛ), как известно, оснащались паропроизводящими установками с водо-водяными реакторами. Однако уже на второй АПЛ "Си вулф" американские конструкторы применили реактор с жидкометаллическим теплоносителем (ЖМТ). Рассматривались и другие схемы, в том числе так называемый "кипящий" реактор, реактор с газовым теплоносителем, однако достоинства реактора с ЖМТ оказались наиболее привлекательными. Во-первых, металлический теплоноситель позволяет иметь в первом контуре достаточно высокую температуру при относительно небольшом давлении. Благодаря этому можно было увеличить температуру в паропроизводящем контуре, что способствовало достижению высокого к.п.д. установки в целом. Во-вторых, давление в этом контуре принималось значительно более высоким, чем в первом, поэтому негерметичности первого контура не приводили к быстрому радиоактивному загрязнению пара. В-третьих, большая теплоемкость металла принципиально способствовала уменьшению габаритов и массы реактора.

В Советском Союзе разработка судового реактора с ЖМТ была задана постановлением ЦК КПСС и Совмина от 22 октября 1955 г. Постановление предусматривало создание опытной АПЛ проекта 645 с двухреакторной паропроизводящей установкой. Корпус лодки, как и все основные системы (помимо реакторов), предстояло "позаимствовать" от серийной лодки проекта 627.

Работы по техническому проекту АПЛ были закончены осенью 1956 г., через год подготовили рабочие чертежи, а 15 июня 1958 г. на предприятии СМП в Северодвинске заложили опытный атомоход. Спустя пять лет АПЛ проекта 645, которой был присвоен тактический номер К-27, вступила в состав ВМФ. Подобно кораблям 627-го проекта, новая лодка предназначалась, в основном, для борьбы с надводными кораблями противника при действиях на большом удалении от базы.

В отличие от АПЛ проекта 645 реакторы расположили в четвертом отсеке (у предшественницы - в пятом). Перемещение тяжелых реакторов ближе к носу корабля позволило улучшить дифферентовку, однако в результате принятого решения центральный пост стал соседствовать с реакторным, что усложнило обеспечение радиационной безопасности. Входившие в состав главной энергетической установки ядерные реакторы ВТ-1, созданные подольским ОКБ "Гидропресс" при научном руководстве Физико-энергетического института (Обнинск), имели суммарную мощность 146 МВт. Паротурбинная установка лодки выполнялась двухвальной, каждая из двух паровых турбин имела номинальную мощность 17 500 л.с.

На своей лодке американцы применили в качестве ЖМТ натриево-калиевый сплав, активно, с большим выделением тепла, реагировавший при соприкосновении с водой. Отечественные конструкторы остановились на сплаве свинец-висмут с температурой плавления 398 К. Температура теплоносителя на выходе из реактора составляла 713 К., а температура перегретого пара во втором контуре - 628 К. Реакторы обладали определенными преимуществами по сравнению с традиционными водо-водяными. В частности, их расхолаживание в случае перерыва в электропитании осуществлялось путем естественной циркуляции, без использования насосов.

Лодку обеспечивали электроэнергией два автономных турбогенератора мощностью по 1600 кВт. В частности, от них запитывались так называемые "двигатели подкрадывания" ПГ-116, позволявшие скрытно сблизиться с объектом атаки (основные сильно шумящие турбозубчатые агрегаты при этом отключались). В отличие от АПЛ проекта 627 резервная дизель-электрическая установка у К-27 отсутствовала.

После вступления в строй лодка совершила два дальних похода, выявивших как положительные, так и отрицательные стороны применения судовых реакторов с ЖМТ. Трудности были преимущественно эксплуатационные. Так, выяснилось, что сплав свинец-висмут постепенно зашлаковывался, что требовало его периодической замены. С учетом того, что отработанный сплав был загрязнен высокоактивным полонием-210, пришлось создать специальные дистанционно управляемые устройства для приема теплоносителя. Даже при стоянке в базе, а также при доковании следовало постоянно поддерживать температуру в первом контуре выше температуры застывания ЖМТ, что создавало определенные неудобства для экипажа.

В мае 1968 г. К-27 в очередной раз вышла в море. Уже при возвращении на лодке произошла тяжелая радиационная авария, в результате которой погибло девять членов экипажа атомохода. После аварии восстанавливать К-27 не стали, и после 13-летнего отстоя в резерве лодка была затоплена в Карском море.

Однако опыт эксплуатации судовых реакторов с ЖМТ в нашей стране не был признан однозначно отрицательным (в отличие от США). В 1959 г. А.Б. Петров, один из ведущих специалистов ленинградского КБ, проектировавшего АПЛ, предложил идею малогабаритной высокоскоростной лодки, отличавшейся исключительно высокой по тем временам степенью автоматизации. По его замыслу она должна была стать своеобразным "подводным истребителем-перехватчиком" неприятельских субмарин. Идею поддержали на самом высоком уровне. В частности, ее сторонниками были министр судостроения Б.Е. Бутома и главком ВМФ С.Г. Горшков. 23 июня 1960 г. вышло совместное постановление ЦК КПСС и Совмина о постройке АПЛ проекта 705. Об исключительном внимании "сверху" к оригинальному кораблю свидетельствовало и второе постановление от 25 мая 1961 г., разрешившее конструкторам при наличии достаточных оснований отступать от норм и правил, принятых в военном кораблестроении.

Общее руководство программой осуществлял академик А.П. Александров, главным конструктором был назначен М.Г. Русанов. Для достижения 40-узловой скорости требовалась исключительно мощная, и, вместе с тем, малогабаритная и легкая энергетическая установка. Выполненные расчеты убедительно свидетельствовали, что применение реактора с ЖМТ позволяло сэкономить 300 т водоизмещения по сравнению с традиционным водо-водяным реактором. Созданием энергетической установки для АПЛ проекта 705 занялись два коллектива: подольское ОКБ "Гидропресс" и горьковское ОКБМ.

Первоначальный проект предусматривал комплексную автоматизацию большинства систем АПЛ, и, благодаря этому, - исключительно малую численность экипажа из 16 человек. Столь "экстремистское" предложение не нашло отклика у руководства ВМФ, настоявшего на увеличении состава экипажа до 29 специалистов - только офицеров и мичманов. Лодка имела всего один обитаемый отсек, а прямо над ним - впервые в мире - аварийную всплывающую камеру, обеспечивавшую спасение всего экипажа с глубин вплоть до предельной, при значительных крене и дифференте.

Опытную лодку проекта 705 (тактический номер К-64) заложили на ленинградском Адмиралтейском объединении в июне 1968 г., а спустя три с половиной года корабль прибыл на Северный флот, вступив в его состав 31 декабря 1971 г. Эта лодка имела энергетическую установку, разработанную горьковским ОКБМ. С самого начала эксплуатации К-64 преследовали неудачи и аварии, крупнейшая из которых привела к застыванию теплоносителя и полному выходу из строя реактора. В августе 1974 г. лодку вывели из боевого состава флота, а еще до этого приостановили и всю программу строительства серии (к этому времени в Ленинграде и Северодвинске на стапелях находились еще пять аналогичных кораблей).

Состоявшийся "разбор полетов" на самом высоком уровне привел к отказу от варианта горьковчан в пользу энергетической установки БМ-40А мощностью 150 МВт, разработанной в Подольске. Она оказалась гораздо более надежной, во всяком случае, на построенных впоследствии шести АПЛ усовершенствованного проекта 705К по причине радиационных аварий не погиб ни один моряк.

Лодки проекта 705К были приняты флотом в 1977-1981 гг. Их оценки разными специалистами варьировались от весьма положительных ("золотая рыбка", "упущенная жар-птица") до резко негативных. Названные на Западе "Альфами", эти АПЛ могли часами висеть на хвосте у НАТОвских субмарин, не позволяя им ни оторваться, ни контратаковать, ведь их маневренность и скорость были куда выше, чем у оппонентов. Благодаря особенностям энергетической установки "семьсот пятые" обладали исключительно высокими разгонными и маневренными характеристиками. Для разворота на 180° при максимальной скорости лодке требовалось всего 42 c. Первому командиру первой АПЛ проекта 705К капитану 2 ранга А.Ч. Аббасову за успешное освоение корабля принципиально нового типа в 1984 г. было присвоено звание Героя Советского Союза.

Вместе с тем, оригинальность конструкции неизбежно предполагала и наличие изрядной "ложки дегтя". Западные специалисты неизменно критиковали "Альфы" за высокую шумность, почти неизбежную при движении АПЛ с высокой подводной скоростью. Не преминул упомянуть об этом Том Кленси в своей крайне тенденциозной книге "Охота за "Красным Октябрем". Но более существенными опять-таки оказались эксплуатационные проблемы: необходимость постоянного поддержания реактора в "теплом" состоянии, периодической регенерации и замены ЖМТ. Флоту не удалось отладить на практике внешне весьма привлекательную систему эксплуатации лодки двумя экипажами - "морским" и "береговым". В результате карьера АПЛ проекта 705 была непродолжительной - все они, кроме одной, были выведены из боевого состава флота уже к 1990 г. Последней "Альфой" в составе российского ВМФ оставалась головная серийная лодка К-123, списанная в 1997 г.

И все же, по мнению специалистов Физико-энергетического института, опыт эксплуатации корабельных реакторов с ЖМТ позволяет рекомендовать подобные системы для использования на перспективных АПЛ.

Число атомных подводных лодок, построенных в СССР и США

Период