Катализатор для процесса фишера-тропша (варианты) и способ его получения. Процесс фишера-тропша Синтетические жидкие углеводороды

Процесс получения углеводородов на основе оксида углерода и водорода на железных и кобальтовых катализаторах разработан в 1923 году Фишером и Тропшем.

Химизм процесса

Получение углеводородных смесей из оксида углерода и водорода представляет собой комплекс сложных параллельных и последовательных реакций. Первой стадией процесса является совместная хемосорбция оксида углерода и водорода на поверхности катализатора, в результате чего образуется первичный поверхностный комплекс. В результате дальнейшего ступенчатого присоединения углеводородных фрагментов происходит рост углеводородной цепи. Основные направления процесса можно представить схемой:

СО + Н 2 → C n H 2 n +2 + C n H 2 n + H 2 O + Q

CO + H 2 → C n H 2n+2 + CО 2 + Q

Таким образом в результате синтеза образуется смесь парафиновых и олефиновых углеводородов, воды и СО 2 .

Синтез Фишера-Тропша протекает в присутствии катализаторов, содержащих металлы VIII группы Периодической системы – никель, кобальт, железо с добавками оксидов некоторых других металлов (тория, магния, циркония, титана). Выход и состав продуктов реакции определяется видом катализатора и условиями проведения процесса. Реакция является экзотермической. Помимо образования углеводородов в процессе синтеза в небольших количествах получаются органические кислородсодержащие соединения, главным образом спирты С 1 -С 6 . Промышленные катализаторы современного процесса Фишера-Тропша часто состоят из железа, нанесенного на оксид алюминия, диоксид кремния или кизельгур, и содержат в качестве промоторов соли щелочных металлов.

Применяют также Со-катализаторы, в качестве носителей осажденных кобальтовых катализаторов применяют природные и синтетические алюмосиликаты и цеолиты. На кобальтовых катализаторах образуются смеси, состоящие преимущественно из парафиновых углеводородов нормального строения (80%) с примесью нормальных алкенов (15%) с числом атомов углерода 1-100 и небольшого количества разветвленных алканов, алкенов и кислородсодержащих соединений (5%). Процесс протекает при температуре 170-200 о С и давлении 0,1-1,0 МПа. В присутствии железных катализаторов синтезы углеводородов из оксида углерода и водорода осуществляются в более жестких условиях: температуре в реакторе 200-235 о С, давлении 3-4 МПа. В результате образуются углеводородные смеси с большим содержанием олефинов (до 50%) и кислородсодержащих соединений.

Одной из нежелательных побочных реакций является диспропорционирование оксида углерода:

2СО → C + CO 2

что приводит к отложению углерода на поверхности катализатора и часто является причиной дезактивации последнего.

Дизельное топливо можно получать как в ходе синтеза Фишера-Тропша непосредственно, так и в результате крекинга образующихся в процессе углеводородов выше С 19 и олигомеризации алкенов С 3 -С 8 . Бензины, получаемые на железных катализаторах, имеют лучшие моторные характеристики, чем бензины, производимые на кобальтовых катализаторах. Однако при применении кобальтовых катализаторов образуется много дорогостоящих высокомолекулярных восков, что улучшает экономические показатели процесса.

Основным недостатком ФТ- синтеза является его низкая селективность. Смесь продуктов, полученная этим методом, включает 25-30% метана, 15-20% углеводородов С 2 -С 4 и только 24-45% жидких углеводородов. Одной из важнейших проблем при совершенствовании процесса является организация переработки в топливные фракции или другие ценные продукты образующихся легких углеводородов. К недостаткам процесса следует также отнести дороговизну катализаторов, сложность их регенерации, низкую производительность.

Технологическое оформление процесса

В промышленности реализованы: технология в стационарном слое катализатора, в потоке взвешенного катализатора, в жидкой фазе с суспендированным катализатором.

Принципиальная технологическая схема высокопроизводительного синтеза Фишера-Тропша на железном катализаторе.

1 – реактор; 2 – мультициклон; 3 – теплообменник; 4 – конденсатор; 5 – сборник парафина; 6 – сборник высококипящих угледоводоров; 7 – сборник легких углеводородов; 8 – сборник реакционной воды.

Потоки: I – синтез-газ; II – питательная вода; III – пар; IV – циркулирующий газ; V – остаточный газ; VI – щелочь.

Исходный синтез-газ смешивают в соотношении 1:2,5 с циркулирующим газом, компримируют до 2,5 МПа и через теплообменник вводят в реактор в количестве 500-700 куб. м. на 1 куб м. катализатора в час. В реактор загружают 40 куб. м. железного катализатора. Катализатор работает непрерывно в течение 9-12 месяцев с постепенным повышением температуры с 220 до 250 о С, обеспечивая конверсию синтез-газа 65-73%. Производительность одного реактора – 250 т./сут. углеводородов С 2 и выше.

В реакторах этого типа получают в основном насыщенные углеводороды, в том числе и высокомолекулярные твердые парафины типа церезина.

Принципиальная технологическая схема синтеза Фишера-Тропша в газовой фазе в потоке взвешенного катализатора.

1 – подогреватель; 2 – реактор; 3 – холодильник; 4 – колонна-сепаратор; 5 – конденсатор; 6 – разделительная колонна; 7 – колонна для промывки бензина; 8 – колонна для промывки газа.

Потоки: I – синтез-газ; II – ввод свежего катализатора; III – суспензия катализатора; IV – циркулирующее масло; V – вода; VI – вода и водорастворимые продукты; VII – тяжелое масло; VIII – бензин; IX – отходящий газ.

Синтез-газ вводят в реактор вместе с катализатором. Синтез проводят при температуре 310-350 о С и давлении 2-3 МПа. Продукты реакции и катализатор поступают в колонну-сепаратор, оборудованную циклонами для отделения катализатора. Отвод тепла осуществляют при помощи двух холодильников, через которые циркулирует масло. Срок службы катализатора 42-45 суток.

Отличительной особенностью процесса в потоке взвешенного «увеличенного» катализатора является высокое содержание олефинов во фракции выше С 3 (60-85%).

В смесях, получаемых в реакторах со взвешенным слоем катализатора, может содержаться значительное количество ценных побочных продуктов – кислородсодержащих соединений (спирты, карбоновые кислоты, альдегиды, кетоны).

ПРОИЗВОДСТВО МЕТАНОЛА

Метанол является ценным крупнотоннажным продуктом, находящим широкое применение в различных отраслях промышленности.

Объем потребления метанола в мире непрерывно возрастает. В настоящее время его мировое производство превышает 20 млн. т/год.

Традиционным потребителем метанола является производство формальдегида (в первую очередь, его водного раствора - формалина), который получают окислительной конверсией метанола. На долю формальдегида приходится половина производимого метанола.

Потребителями метанола являются производства различных мономеров (например, метилметакрилата и диметилтерефталата), метилтретбутилового эфира (МТБЭ), метилгалогенидов, метиламинов, ионообменных смол, уксусной кислоты. Метанол также широко используется как растворитель и экстрагент.

Одной из новых областей применения метанола является ис­пользование его в качестве моторного топлива взамен ставшего дефицитным и весьма дорогим бензина.

Метанол либо добавляют к бензину в количестве до 5%, либо используют целиком вместо бензина. Однако метанол обладает более низкой теплотворной способностью и является весьма токсичным, что, вероятно, будет сдерживать его применение.

Метанол – ядовитая бесцветная жидкость со сладковатым запахом.

Метанол в числе других кислородсодержащих соединений впервые был получен из оксида углерода и водорода в 1913 г. Для этой цели использовали железные катализаторы, которые однако быстро покрывались углеродом и дезактивировались. Применение цинк-хромовых катализаторов позволило устранить этот недостаток. Было установлено, что оксид цинка не чувствителен к сере, соединения которой обычно содержатся в синтез-газе и отравляют металлические катализаторы.

Реакция образования метанола идет с выделением тепла и уменьшением объема, поэтому ей благоприятствуют низкие температуры и высокие давления. При синтезе метанола протекают следующие реакции:

СO+2H 2 → CH 3 OH –ΔН 25 = 110,8 кДж/моль (1)

СO+H 2 O → CO 2 +H 2 –ΔН 25 = 41 кДж/моль (2)

CO 2 +3H 2 → CH 3 OH+H 2 O –ΔН 25 = 60,4 кДж/моль (3)

С повышением температуры степень превращения СО заметно снижается.

Условия проведения реакции определяются катализатором. Если катализатор обладает такой высокой активностью, что уже при низкой температуре достигается высокая степень превращения СО, то синтез метанола можно осуществлять уже при давлении 5 МПа. В противном случае, то есть при применении менее активного катализатора, работающего при более высокой температуре, необходимо давление ~30 МПа. Катализаторы, обычно применяемые в промышленности, проявляют активность только при высоких температурах (360-380 о С), т.е. в условиях термодинамически неблагоприятных. В промышленности наибольшее распространение получили цинк-хромовые катализаторы, а в последние годы – медьсодержащие катализаторы, достаточно активные при температуре 220-270 о С.

При управлении селективностью синтеза метанола необходимо учитывать, что протекание этой реакции гораздо менее термически благоприятно, чем протекание таких побочных реакций, как образование углеводородов, высших спиртов, диметилового эфира. Эти реакции можно подавить варьированием состава катализатора.

В зависимости от применяемых катализаторов (а, следовательно, условий синтеза) различают два варианта превращения синтез-газа в метанол: синтезы при высоком и низком давлении.

При высоком давлении применяют катализаторы на основе оксида цинка, характеризующиеся низкой чувствительностью к сере, промотированные оксидами хрома (межкристаллический промотор – располагающийся вне кристаллической решетки ZnO) или оксидами железа, кальция, магния (внутрикристаллические промоторы – располагающиеся внутри кристаллической решетки ZnO).

Реакторы высокого давления представляют собой цельнокованные аппараты колонного типа, для эффективного теплоотвода используют реакторы полочного типа с промежуточным вводом холодного газа и выносным или встроенным теплообменником. Обычное число полок 5-6, для пуска агрегата применяют встроенный электронагреватель или специальную трубчатую печь.

Наиболее эффективными каталитическими системами, работающими при низком давлении, являются медьсодержащие оксидные катализаторы. Однако медьсодержащие катализаторы отличаются высокой чувствительностью к примесям сернистых соединений, почти всегда содержащимся в синтез-газе. Если при синтезе на цинк-хромовых катализаторах допустимо содержание сероводорода в синтез-газе выше 100 ррm, то для медных катализаторов этот показатель не может превышать 1 ppm.

При низком давлении используют полочные реакторы, аналогичные тем, что применяются при высоком давлении, или реакторы трубчатого типа, в которых катализатор загружен в трубки, а тепло реакции отводится кипящей водой, циркулирующей в межтрубном пространстве реактора и связанной с паросборником, так как при съеме тепла генерируется водяной пар. При использовании трубчатого реактора не требуется пусковой нагреватель, реактор в пусковой период разогревается водяным паром из сети, что является преимуществом реактора этого типа. В то же время достоинством полочного реактора является простота конструкции и легкость загрузки и выгрузки катализатора.

Природный газ отделяют от тяжелых углеводородов и компримируют в турбокомпрессоре 1 до 2,5 МПа, после чего направляют на очистку и далее в блок конверсии метана 3. Туда же поступает водяной пар. К метану добавляют небольшое количество СО 2 . Кон­версия метана осуществляется при температуре 850-860 °С. После печей конверсии синтез-газ поступает в котел-утилизатор 4, где генерируется пар высокого давления (12 МПа), который затем перегревается и поступает на турбины - привод компрессоров 1 и 11. Если конверсии подвергают тяжелое жидкое сырье, то блок очистки располагается после конверсии, а необходимость в ком­прессоре 1 отпадает. В последнем случае конверсию проводят при давлении 5,8 МПа, а синтез-газ после очистки не нуждается в до­полнительной компрессии и поступает в циркуляционный компрес­сор 11.

Синтез-газ, полученный из природного газа, направляют на доохлаждение с целью конденсации воды. Далее синтез-газ дожи­мается в турбокомпрессоре 12 до 5-5,5 МПа, смешивается с цир­куляционным газом и через теплообменник 6, обогреваемый горя­чим реакционным газом, поступает в два параллельно работаю­щих реактора синтеза метанола 7.

Технологическая схема синтеза метанола под низким давлением:

1,11,12- компрессоры; 2 - блок очистки; 3-блок конверсии метана; 4 - котел-утилизатор; 5 - блок очистки и доохлаждення синтез-газа; 6- теплообменник; 7 - реакторы син­теза метанола; 8-паросборник; 9 - холодильник; 10- газосепаратор в. д.

Реакторы трубчатого типа охлаждаются циркулирующей в межтрубном пространстве водой. Пар направляется в паросборник 8 , куда подается и химически очищенная вода. Конденсат из паросборника вновь поступает в реакторы 7, а водяной пар высокого давления направляется на перегрев и используется в турбинах. Продукты реакции направ­ляются через теплообменник 6 , где отдают свое тепло синтез-газу, в конденсатор-холодильник 9 и в газосепаратор 10 для отделения метанола от циркуляционного газа. Последний поступает на прием циркуляционного компрессора 11 и вновь направляется в систему синтеза. Часть газа отдувают для удаления поступающих в си­стему инертных примесей (главным образом метана и азота). Ме­танол-сырец из газосепаратора 10 направляется на ректификацию.

Метод Фишера - Тропша по превращению метана в более тяжелые углеводороды был разработан в 1923 г. и реализован в промышленности Германии в 1940-х годах.

Почти все авиационное топливо в этой стране во время второй мировой войны производилось с помощью синтеза Фишера - Тропша из каменного угля. Впоследствии от этого способа изготовления моторных топлив отказались, так как топливо, получаемое при переработке нефти, до последнего времени было экономически более выгодным.

При получении жидкого топлива на основе синтеза Фишера - Тропша разнообразные соединения углерода (природный газ, каменный и бурый уголь, тяжелые фракции нефти, отходы деревообработки) конвертируют в синтез-газ (смесь СО и Н2), а затем он превращается в синтетическую «сырую нефть» - синтнефть. Это - смесь углеводородов, которая при последующей переработке разделяется на различные виды практически экологически чистого топлива, свободного от примесей соединений серы и азота. Достаточно добавить 10% искусственного топлива в обычное дизельное, чтобы продукты сгорания дизтоплива стали соответствовать экологическим нормам.

Еще более эффективной представляется конверсия газа в дорогостоящие продукты тонкого органического синтеза.

Конверсию газа в моторное топливо можно в целом представить как превращение метана в более тяжелые углеводороды:

2nСН4 + 1/2nО2 = Сn Н2n + nН2 О

Из материального баланса брутто-реакции следует, что массовый выход конечного продукта не может превышать 89%.

Реакция напрямую неосуществима. Конверсия газа в жидкое топливо (КГЖ) проходит через ряд технологических стадий (рис.17). При этом в зависимости от того, какой конечный продукт необходимо получить, выбирается тот или иной вариант процесса.

Синтез Фишера-Тропша может рассматриваться как реакция восстановительной олигомеризации монооксида углерода, при которой образуются углерод-углеродные связи, и в общем виде она представляет собой сложную комбинацию ряда гетерогенных реакций, которую можно представить суммарными уравнениями:

nCO + 2nH2 > (CH2)n + nH2 O,

2nCO + nH2 > (CH2)n + nCO2 .

Рис. 17.

Продуктами реакции являются алканы, алкены и кислородсодержащие соединения, то есть образуется сложная смесь продуктов, характерная для реакции полимеризации. Первичными продуктами синтеза Фишера-Тропша являются a- и b-олефины, которые превращаются в алканы в результате последующего гидрирования. Природа применяемого катализатора, температура, соотношение СО и Н2 существенно сказываются на распределении продуктов. Так, при использовании железных катализаторов велика доля олефинов, тогда как в случае кобальтовых катализаторов, обладающих гидрирующей активностью, преимущественно образуются насыщенные углеводороды.

В настоящее время в качестве катализаторов синтеза Фишера-Тропша в зависимости от поставленных задач (повышение выхода бензиновой фракции, увеличение выхода низших олефинов и др.) используются как высокодисперсные железные катализаторы, нанесенные на оксиды алюминия, кремния и магния, так и биметаллические катализаторы: железо-марганцевые, железо-молибденовые и др.

За 70 лет с момента открытия синтеза не утихают споры по поводу механизма реакции. В настоящее время рассматриваются три различных механизма. Первый механизм, называемый карбидным, впервые предложенный Фишером и Тропшем и в дальнейшем нашедший поддержку у других исследователей, предполагает образование С-С-связей в результате олигомеризации метиленовых фрагментов на поверхности катализатора. На первой стадии происходит адсорбция СО и образуется поверхностный карбид, а кислород превращается в воду или СО2:

На второй стадии поверхностный карбид гидрируется с образованием фрагментов СНx (х = 1-3):

Удлинение цепи происходит в результате реакции поверхностных метила и метилена и далее путем внедрения метиленовых групп идет рост цепи:

Стадия обрыва цепи происходит в результате десорбции алкена с поверхности катализатора.

Второй механизм, названный гидроксикарбеновым, предполагает также гидрирование координированного на металле СО с образованием поверхностных гидроксикарбеновых фрагментов, в результате конденсации которых и происходит образование С-С-связей:

Третий механизм, который можно назвать механизмом внедрения, предполагает образование С-С-связей в результате внедрения СО по связи металл-углерод (о способности СО к внедрению по связи металл-алкил говорилось выше):

Накоплен достаточно богатый экспериментальный материал, свидетельствующий в пользу того или иного варианта механизма, однако приходится констатировать, что к настоящему моменту невозможно сделать однозначный выбор между ними. Можно предположить, что в связи с большой важностью синтеза Фишера-Тропша исследования в этом направлении будут интенсивно продолжаться и мы станем свидетелями новых воззрений на механизмы протекающих реакций .

Процесс получения

Процесс Фишера – Тропша описывается следующим химическим уравнением

CO + 2 H 2 ----> --CH 2 -- + H 2 O

2 CO + H 2 ----> --CH 2 -- + CO 2 . Смесь монооксида углерода и водорода называется синтез-газ или сингаз. Получаемые углеводороды очищают для получения целевого продукта - синтетической нефти.

После войны взятые в плен германские учёные участвовали в операции «Скрепка» продолжая работать над синтетическими топливами в США в Бюро горной промышленности США.

Впервые синтез углеводородов из смеси СО и Н 2 был осуществлён в начале XX века : Сабатье и Сандеренсом был синтезирован метан , Е. И. Орловым - этилен . В 1913 г компания BASF взяла патент на получение смесей углеводородов и спиртов из синтез-газа над подщелоченными Co-Os катализаторами (в дальнейшем это направление вылилось в создание процесса синтеза метанола). В 1923 г немецкие химики Ф.Фишер и Г.Тропш, сотрудники компании Ruhrchemie, сообщили о получении кислородсодержащих продуктов из синтез-газа над Fe катализаторами, а в 1926 г - углеводородов. Первый промышленный реактор был пущен в Германии в 1935 г, использовался Co-Th осажденный катализатор. В 1930-40-е гг на основе технологии Фишера – Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40-55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75-100 и твёрдого парафина. Сырьем для процесса служил уголь, из котоого газификацией получали синтез-газ, а из него углеводороды. К 1945 г в мире имелось 15 заводов синтеза Фишера – Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн.т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла.

В годы после второй мировой войны синтезу ФТ уделяли большое внимание во всём мире, поскольку считалось, что запасы нефти подходят к концу, и надо искать ей замену. В 1950 г был пущен завод в Браунсвилле (Техас) на 360 тыс. т/г. В 1955 г южноафриканская компания Sasol построила собственное производство, существующее и развивающееся до сих пор. В Новочеркасске с 1952 работала установка мощностью около 50 тыс. т/г, использующая вывезенное из Германии оборудование. Сырьем служил сначала уголь донецкого бассейна, а затем природный газ. Немецкий Co-Th катализатор был со временем заменён на оригинальный, Co-Zr. На заводе была установлена колонна точной ректификации, так что в ассортимент продукции завода входили индивидуальные углеводороды высокой чистоты, в том числе α-олефины с нечетным углеродным номером. Установка работала на Новочеркасском заводе синтетических продуктов вплоть до 1990-х годов и была остановлена по экономическим причинам.

Все эти предприятия в значительной степени заимствовали опыт немецких химиков и инженеров, накопленный в 30-40-е годы.

Открытие обширных месторождений нефти в Аравии, Северном море, Нигерии, Аляске резко снизило интерес к синтезу ФТ. Почти все существующие заводы были закрыты, единственное крупное производство сохранилось в ЮАР. Активность в этой области возобновилась к 1990-м годам.

В 1990 г компания Exxon запустила опытную установку на 8 тыс. т/г с Co катализатором. В 1992 г южноафриканская компания Mossgas построила завод мощностью 900 тыс. т/г. В отличие от технологии Sasol, в качестве сырья здесь использовался природный газ с шельфового месторождения. В 1993 году компания Shell запустила завод в Бинтулу (Малайзия) мощностью 500 тыс. т/г, используя Co-Zr катализатор и оригинальную технологию «средних дистиллятов». Сырьем служит синтез-газ, получаемый парциальным окислением местного природного газа. В настоящее время Shell строит завод по той же технологии, но на порядок большей мощности в Катаре. Свои проекты в области синтеза ФТ разной степени проработки имеют также компании Chevron , Conoco , , ENI , Statoil , Rentech, Syntroleum и другие.

Научные основы процесса

Синтез ФТ можно рассматривать как восстановительную олигомеризацию оксида углерода:

nCO + (2n+1)H 2 → C n H 2n+2 + nН 2 О

nCO + 2nH 2 → C n H 2n + nН 2 О

Тепловой эффект значителен, 165 кДж/моль СО.

Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, так силикагель и глинозём. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан (n=1), при повышении же давления никель образует летучий карбонил и вымывается из реактора.

Побочными реакциями синтеза углеводородов из СО и Н 2 являются:

  • гидрирование оксида углерода до метана : СО + 3Н 2 → СН 4 + Н 2 О + 214 кДж/моль
  • реакция Белла – Будуара (диспропорционирование СО): 2СО → СО 2 + С
  • равновесие водяного газа: СО + Н 2 О ↔ СО 2 + Н 2

Последняя реакция имеет особое значение для катализаторов на основе железа, на кобальте она почти не протекает. На железных катализаторах, кроме того в значительных количествах образуются кислородсодержащие соединения - спирты и карбоновые кислоты.

Типичными условиями проведения процесса являются: давление от 1 атм (для Co катализаторов) до 30 атм, температура 190-240 °C (низкотемпературный вариант, для Co и Fe катализаторов) или 320-350 °C (высокотемпературный вариант, для Fe).

Механизм реакции, несмотря на десятилетия его изучения, в деталях остаётся неясен. Впрочем, эта ситуация типична для гетерогенного катализа.

Термодинамические закономерности для продуктов синтеза ФТ таковы:

  1. Возможно образование из СО и H 2 углеводородов любой молекулярной массы, вида и строения кроме ацетилена .
  2. Вероятность образования углеводородов уменьшается в ряду: метан > другие алканы > алкены . Вероятность образования нормальных алканов уменьшается, а нормальных алкенов повышается с увеличением длины цепи.
  3. Повышение общего давления в системе способствует образованию более тяжелых продуктов, а увеличение парциального давления водорода в синтез-газе благоприятствует образованию алканов.

Реальный состав продуктов синтеза углеводородов из СО и Н 2 существенно отличается от равновесного. В большинстве случаев распределение продуктов по молекулярной массе в стационарных условиях описывается формулой p(n) = n(1-α)²α n-1 , где p(n) - массовая доля углеводорода с углеродным номером n, α = k 1 /(k 1 +k 2), k 1 , k 2 - константы скорости роста и обрыва цепи, соответственно. Это т. н. распределение Андерсона – Шульца – Флори (ASF distribution). Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина α снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину α. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции. Это вторая, после теплосъема, проблема синтеза ФТ.

Использование

В настоящее время две компании коммерчески используют свои технологии, основанные на процессе Фишера – Тропша. Shell в Бинтулу, Малазия , использует природный газ в качестве сырья и производит, преимущественно, малосернистое дизельное топливо . Sasol в Южной Африке использует уголь в качестве сырья для производства разнообразных товарных продуктов из синтетической нефти. Процесс и сегодня используется в ЮАР для производства большей части дизельного топлива страны из угля компанией Sasol. Процесс использовался в ЮАР для удовлетворения потребностей в энергии во время изоляции при режиме апартеида . Внимание к этому процессу возобновилось в процессе поиска путей получения малосернистых дизельных топлив для уменьшения наносимого дизельными двигателями вреда окружающей среде. Маленькая американская компания Rentech в настоящее время сфокусировалась на преобразовании заводов по производству азотистых удобрений от использования в качестве сырья природного газа к использованию угля или кокса и жидких углеводородов в качестве побочного продукта.

В сентябре 2005 губернатор Эдвард Ренделл заявил о создании предприятия Waste Management and Processors Inc. - использующее технологии, лицензированные у Shell и Sasol. Будет построена фабрика, использующая синтез Фишера – Тропша для переработки так называемого бросового углерода (остатков от угледобычи) в малосернистое дизельное топливо на участке около города Mahanoy на северо-западе Филадельфии . Штат Пенсильвания взял на себя обязательство покупать значительный процент продукции завода и, вместе с Департаментом энергетики США (DoE), предложил более 140 миллионов долларов налоговых льгот. Прочие добывающие уголь штаты также разрабатывают подобные планы. Губернатор штата Монтана Бриан Швейцер (Brian Schweitzer) предложил построить завод, который будет использовать процесс Фишера – Тропша для превращения угольных запасов штата в топливо, чтобы уменьшить зависимость США от импорта нефти .

В начале 2006 года в США рассматривались проекты строительства 9 заводов по непрямому сжижению угля суммарной мощностью 90 – 250 тыс. баррелей в день.

Китай планирует инвестировать 15 млрд долл. до 2010-2015 гг. в строительство заводов по производству синтетического топлива из угля. Национальная Комиссия Развития и Реформ (NDRC) заявила, что суммарная мощность заводов по сжижению угля достигнет 16 млн тонн синтетического топлива в год, что составляет 5 % от потребления нефти в 2005 году и 10 % импорта нефти.

Технологии переработки угля в жидкое топливо порождают множество вопросов со стороны экологов. Наиболее серьёзной является проблема выбросов углекислого газа. Последние работы Национальной лаборатории по возобновляемым источникам энергии США (National Renewable Energy Laboratory) показали, что в полном цикле выбросы парниковых газов для произведённых из каменного угля синтетических топлив примерно вдвое выше своего основанного на бензине эквивалента. Выбросы прочих загрязнителей также сильно увеличились, тем не менее, многие из них могут быть собраны в процессе производства. Захоронение углерода было предложено в качестве способа уменьшения выбросов оксида углерода. Закачка C O 2 в нефтяные пласты позволит увеличить добычу нефти и увеличить срок службы месторождений на 20-25 лет, однако использование данной технологии возможно лишь при устойчивых нефтяных ценах выше 50-55 долл. за баррель. Важной проблемой при производстве синтетического топлива является и высокое потребление воды, уровень которого составляет от 5 до 7 галлонов на каждый галлон полученного топлива.