Где сделать спектральный анализ металлов. Испытательный центр виам

Для любой отрасли, так или иначе связанной с металлами - от скупки до металлургического завода, важен состав сырья. Металлы и сплавы должны соответствовать определенным параметрам и для того, чтобы выпустить качественное изделие, и для того, чтобы можно было объективно оценить стоимость материала, попадающего в скупку. Один из таких параметров - химический анализ состава, который можно произвести, не прибегая к помощи сложных реактивов и длительных процессов.

Один из методов определить точный состав металла - спектральный анализ. Он основан на взаимодействии материй со спектром излучений, включая электромагнитное и акустическое. Атомы каждого химического элемента имеют свои резонансные частоты, на которых они излучают или поглощают свет. От количества и состояния вещества зависит количество и интенсивность линий, которые показывает спектрометр. В зависимости от целей проводят разные методы спектрального анализа.

Спектральный анализ золота

Для определения состава металла применяется рентгенофлуоресцентный (элементный) анализ. Спектрометр воздействует на материал рентгеновским излучением, при этом электроны вещества переходят на высокие энергетические уровни. Излишек энергии в виде фотона со строго определенным значением для каждого вещества попадает на детектор прибора. Фотон преобразовывается в импульс напряжения, показания снимаются прибором и передаются на экран в виде графика или цифровых показателей.

Сам метод анализа был открыт в начале XX века, а рентгенофлуоресцентный прибор создали только в 1948 году. Сейчас спектрометры получили широкое распространение - их используют не только в металлургии, ювелирном деле и химической индустрии, но и в нефтяной промышленности, археологии, с их помощью определяют наличие тяжелых металлов в почве и воде, в пищевых продуктах. Ими пользуются экологи и геологи, спектрометрами оснащены даже межпланетные аппараты, берущие пробы пород. Распространенность этого метода связана со скоростью получения результатов и высокой точностью показателей.

Применение спектрального анализа

При вторичной переработке спектральный анализ помогает точно рассортировать черный и цветной лом, а так же определить выбраковку, в литейном производстве с помощью него готовая продукция проходит входной и сертификационный контроль, в промышленности - подтверждение качества материалов, поступивших в производство. Для анализа берутся или специально отлитые пробы, аналогичные по составу основному металлов, или анализируется сам металл. За несколько минут можно получить анализ стали и чугунов, медных, алюминиевых, свинцовых и оловянных сплавов, сплавов титана, лигатур, содержание драгоценных металлов.

В зависимости от целей и объемов существуют стационарные лабораторные, мобильные и портативные спектрометры. Последние наиболее популярны в компаниях по скупке металлов, так как имеют небольшой размер, вес, удобную форму «пистолет», высокую производительность - около 1000 тестов в день и точность показаний. Они просты в применении, работают в воздушной и аргонной среде, имеют марочник металлов, а количество идентифицируемых элементов зависит от характеристик и профиля работы организации - есть приборы и с неограниченным количеством.

Портативные анализаторы позволяют определить количество примесей в ювелирном ломе при скупке золота, покупка автомобильных катализаторов, электронного лома, цветных и черных металлов и их дальнейшая переработка также сопровождается спектральным анализом.

Спектральный анализ в Москве

Наша компания осуществляет моментальную оценку принимаемых в скупку изделий из золота. Менее чем за минуту используемое нами оборудование устанавливает точное содержание золота и других металлов. Это позволяет производить оперативную и объективную оценку в присутствии клиента.

При работе с металлами нередко возникают вполне обоснованные сомнения : соответствует ли металл деталей тому, что указан в конструкторской документации. На любом производстве, как правило, применяют ограниченный ассортимент сталей и сплавов, но острой проблемой остается перепутывание марок даже при хорошо налаженном входном контроле. Это и недобросовестность поставщика, когда в одной партии попадаются прутки различных марок, что невозможно определить при входном контроле, перепутывание при выдаче заготовок в производство и отсутствие производственной дисциплины рабочих , которые, чтобы скрыть свой брак, берут любую подвернувшуюся заготовку. В ряде случаев сомнения возникают уже тогда, когда узел собран и подтвердить марку известными способами (спектральным , химическим , рентгенофлуоресцентным ) просто невозможно.

Кроме того, все чаще выпуск бракованной продукции возникает из-за перепутывания металлов при его покупке (недобросовестность поставщика) и при отсутствии входного контроля металлов. В итоге страдает качество заготовок и качество деталей. В ряде случаев сомнения возникают тогда, когда узел уже собран, и подтвердить (идентифицировать) марку металла какой-либо ответственной детали в нем известными методами (спектральным или химическим) не представляется возможным. Также прибор позволяет проводить анализ даже очень мелких деталей. Для этого необходимо расположить их на токопроводящей подложке. Возможно определение пробы золотых изделий.

Можно привести множество примеров, когда на термообработку попадали детали, заданную твердость которых невозможно было получить из-за того, что вместо стали, например, 40Х13 часть из них была изготовлена из 12Х8Н10Т. А как разбраковать несколько тысяч гаек, часть которых случайно была изготовлена из 40Х, а не из 30ХГСА, как того требовалось по конструкторской документации? Или как узнать на полностью готовой печатной плате марку примененного припоя, или каким припоем облужены выводы микросхем? Как подтвердить марку проволоки сварочного электрода?

С этими задачами легко справляется термоэлектрический анализатор «ТАМИС».

Методы анализа и определения (детектирования) металлов и сплавов

Для контроля марок металлов и сплавов используют стандартные методы:

  • химический анализ металлов

    Данный метод позволяет проанализировать химический состав металла с высокой точностью. На данный момент это единственный метод анализа, позволяющий достоверно определить процентное содержание углерода в сталях.

    Для проведения химического анализа стали по углероду стружку исследуемого металла сжигают в водородной среде и анализируют состав получившегося газа фотоколлометрическим методом. Для точности измерения проводят три параллельных пробы. Для определения других элементов используют весовой способ.

    Состав металлов весовым методом определяется путем его перевода в раствор (химическое растворение в растворах кислот, воде). Затем соединение необходимого металла переводится в осадок добавлением соли или щелочи. Далее осадок прокаливается до постоянного веса, а содержание металлов определяется взвешиванием на аналитических весах и пересчетом. Метод дает наиболее точные значения состава металла, но требует больших затрат времени.

    При электрохимическом методе после перевода пробы в водный раствор содержание металла определяется различными электрохимическими методами — полярографическим, кулонометрическим и другими, а также сочетанием с титрованием.

    Эти методы позволяют провести химический анализ металлов в широком диапазоне концентраций с удовлетворительной точностью, но отличаются высокой трудоемкостью, требуют лабораторию и квалифицированный персонал.

  • спектральный анализ металлов

    Достаточно разнообразна группа спектральных методов определения содержания металлов. В нее входят, в частности, различные методы определения содержания металлов путем проведения анализа характеристических спектров электромагнитного излучения атомов — атомный эмиссионный анализ, атомный абсорбционный анализ, спектрофотометрия, масс-спектрометрия, рентгеноспектральный анализ.

    Наиболее широко применяемый в промышленности метод. На современном оборудовании процесс исследования состава металла занимает считанные минуты. При анализе металла данным методом определение количественного содержания углерода в сталях неточно .

    Для спектрального анализа требуются квалифицированные специалисты и дорогостоящее оборудование — спектрометр (порядка 4 млн. руб.). При анализе металла на поверхности остаются следы температурного воздействия, что приводит к нарушению геометрии исследуемой металлической детали.

  • рентгенофлуоресцентный анализ металлов

    Относится к неразрушающим методам. Позволяет определять практически весь элементный состав металлов, за исключением точного содержания углерода в сталях. Процесс определения занимает не более 1 минуты.

    Для проведения рентгенофлуоресцентного анализа требуется достаточно большая площадь поверхности. Измерение малых деталей невозможно. Требуется дорогостоящее оборудование (более 1,5 млн. руб.) и хорошо подготовленные специалисты.

Термоэлектрический анализатор металлов и сплавов ТАМИС

Богатый опыт работы по анализу причин брака на различных производствах, анализу выхода из строя изделий различной сложности и назначения привел к необходимости создания недорогого , простого в обращении именно в производственных условиях анализатора металлов и сплавов (включая цветные).

Эффект Зеебека

В основе работы прибора лежит эффект Зеебека, когда при нагревании соединения двух разнородных металлов возникает термоэдс, величина которой зависит от химического состава исследуемых металлов. Термоэдс легко поддается надежным измерениям и широко используется в промышленности в термопарах для измерения температур при различных технологических процессах читать про эффект .

Преимущества термоэлектрического анализатора металлов и сплавов

При разработке анализатора металлов основное внимание было уделено:

  • надежности
  • достоверности получаемых результатов
  • простоте в эксплуатации

Учитывался тот факт, что прибором могут пользоваться школьники, кладовщицы, рабочие, мастера.

  • Широкий спектр применения прибора:
    • на производственных участках металлообрабатывающих производств (ОТК, материальных кладовых, при входном контроле и пр.)
    • на сборочных участках для контроля металлов в собранных узлах, определения видов покрытия выводов радиоэлементов, марок припоев
    • в термических участках
    • в ювелирных мастерских
    • в мастерских высших учебных заведений и школьных мастерских
    • в исследовательских лабораториях
    • в Центральных заводских лабораториях
    • в лабораториях входного контроля металлов
    • в следственных отделах для оперативного контроля изъятых изделий из драгоценных металлов
    • при проведении лабораторных работ по металловедению в учебных заведениях
  • Простота применения
  • Компактность
  • Не требует квалифицированного персонала
  • Оперативность измерения

Методика определения металлов анализатором ТАМИС

Анализатор способен различить более 40 различных марок сталей и цветных металлов. Для получения достоверных результатов анализа необходимо строго следовать методике проведения анализа, которая описана .

Анализатор металлов позволяет выполнить быстро и точно проверку состава сплава или его вида. Это важно во многих промышленных отраслях. Чаще всего таким способом анализируют вторичное сырье. Связано это с тем, что наобум такую процедуру выполнить нереально даже опытному специалисту. Рассматриваемый прибор еще называют спектрометром.

Предназначение

При помощи анализатора металлов можно достоверно выяснить состав медного сплава и процент посторонних включений в нем. Кроме того, возможно определить содержание никеля в нержавеющей стали. При этом исследуемое сырье не нужно распиливать или нарушать его структуру другим образом. Устройство пригодится тем, кто работает с ломом черных либо Также оно помогает выявить наличие в сплаве тяжелых металлов, что обуславливает безопасность эксплуатации и соблюдение требуемых стандартов.

Виды

Анализатор металлов и сплавов представляет собой сложное высокотехнологическое устройство, создание которого в домашних условиях весьма проблематично. Имеется два типа данных приборов:

  • Лазерные модификации, функционирующие по принципу оптической эмиссии.
  • Рентгеновские вариант, определяющий показания при помощи рентгеновских лучей.

Стационарные аналоги ориентированы на большие склады и базы по приему и переработке металлолома. Например, модель М-5000 представляет собой компактную модификацию, которая может поместиться на столе. Используется приспособление преимущественно на производствах вторичной металлургии. Отзывы специалистов подтверждают, что такое приспособление оптимально сочетает показатели качества и цены.

Оптико-эмиссионные модели

Оптико-эмиссионный анализатор металлов используется при исследовании различных конструкций, заготовок, деталей и слитков. Применяется искровой или воздушный дуговой способ анализа. В первом случае отмечается некоторое испарение металлического сплава.

Рабочей средой рассматриваемых приборов является аргон. Для изменения режима функционирования приспособления достаточно заменить насадку на специальном датчике. Химический состав сплава распознается и фиксируется при помощи оптического спектрометра.

Имеется несколько режимов исследования, а именно:

  • Определение марки металла с использованием специальной таблицы.
  • Сравнение эталонного спектра с аналогом исследуемого сплава.
  • Функция «да - нет», определяющая заданные характеристики сырья.

Данное устройство работает с ферритовыми, алюминиевыми, титановыми, медными, кобальтовыми, инструментальными сплавами, а также низколегированной и нержавеющей сталью.

Рентгенофлуоресцентные варианты

Анализатор металлов этого типа представляют собой чувствительные к свету элементы, способные определить более 40 веществ. Отзывы специалистов отмечают быструю работу данных приборов, а также проведение контроля без нарушения целостности анализируемого объекта.

Благодаря компактности и небольшой массе, рассматриваемые приспособления удобны в работе, оснащены корпусом, защищенным от влаги. Программное обеспечение дает возможность устанавливать эталоны пользователя, вводить требуемые параметры и подключать принтер с последующей распечаткой полученной информации.

Особенностью таких анализаторов является отсутствие возможности фиксирования элементов с атомным номером ниже 11. Следовательно, они не подходят для выявления углерода в чугуне или стали.

Особенности

Анализатор состава металлов оптико-эмиссионного типа обладает следующими возможностями:

  • Прибор в состоянии выявить даже незначительные вкрапления посторонних смесей, что важно при проверке черных металлов на наличие фосфора, серы и углерода.
  • Высокая точность измерений дает возможность использования приспособления для сертификационного анализа.
  • Агрегат предлагается с предварительно загруженной программой, что усложняет проверку сплава на внедрение неизвестных включений, не попавших в список ПО.
  • Перед началом проверки объект необходимо обработать напильником или точильным кругом, чтобы удалить верхний слой грязи или пыли.

Особенности спектральных анализаторов металла рентгеновского типа:

  • Данные приборы не такие точные, однако вполне подходят для работы с ломом и сортировки сплавов.
  • Аппарат отличается универсальностью. Позволяет обнаружить все элементы, доступные для его диапазона.
  • Поверхность исследуемого объекта не нужно обрабатывать тщательно, достаточно удалить ржавчину или краску.

Портативный анализатор металлов

Рассматриваемые устройства подразделяются на три типа:

  1. Стационарный вариант.
  2. Мобильные модели.
  3. Портативные версии.

Стационарные модели находятся в специальных залах, занимают большую площадь, выдают сверхточные результаты, имеют широкий функционал.

Мобильные аналоги - это переносные либо передвижные приспособления. Чаще всего они используются на заводах и лабораториях контроля качества.

Портативный анализатор металлов и сплавов является самым компактным, его можно удерживать в одной руке. Агрегат защищен от механических воздействий, может использоваться в полевых условиях. Такой прибор подойдет людям, разыскивающим сырье при помощи металлоискателя.

Преимущества

Работают портативные модели по той же схеме, что и стационарные аналоги. Средний вес прибора составляет от 1,5 до 2 килограмм. Судя по отзывам пользователей, в определенных сферах такой аппарат становится оптимальным вариантом. Устройство оснащается жидкокристаллическим экраном, на который выводятся сведения о составе исследуемого объекта.

Агрегат способен накапливать и хранить информацию, включая результаты исследований и фотографии. Погрешность анализатора составляет около 0,1%, чего вполне хватит для использования в отрасли вторичной переработки.

При помощи портативной модели можно провести анализ конструкций большой и сложной формы, труб, слитков, мелких деталей, а также заготовок, электродов либо стружки.

Производители

Среди самых известных компаний, выпускающих анализаторы химического состава металла, можно отметить следующие фирмы:

  • Olympus Corporation. Эта японская корпорация специализируется на выпуске фототехники и оптики. Анализаторы этой фирмы пользуются популярностью благодаря высокому качеству. Отзывы потребителей только подтверждают этот факт.
  • Focused Photonics Inc. Китайский производитель является одним из мировых лидеров в сфере выпуска различных приспособлений для контроля различных параметров окружающей среды. Анализаторы компании отличаются не только высоким качеством, но и доступной ценой.
  • Bruker . Немецкая фирма создана свыше 50 лет назад. Ее представительства имеются почти в ста странах. Приборы от этого производителя отличаются высоким качеством и возможностью широкого выбора моделей.
  • ЛИС-01. Аппарат отечественного производства. Выпущен он научным подразделением, офис которого расположен в Екатеринбурге. Основное предназначение аппарата - сортировка лома, диагностика сплавов при входном и выходном контроле. Устройство на порядок дешевле зарубежных аналогов.

В своих отзывах пользователи положительно отзываются о модели MIX5 FPI. Она представляет собой мощную имеющую способность предельно точно обнаруживать тяжелые металлы. Отличает прибор простота в эксплуатации: достаточно нажать одну кнопку и дождаться результатов исследования. В скоростном режиме на это потребуется не более 2-3 секунд.

В завершение

Как показывает практика и отзывы потребителей, анализаторы металлов и сплавов довольно востребованы не только в промышленной сфере, но и в малых компаниях, и среди частных лиц. Найти подходящий вариант на современном рынке достаточно просто. Необходимо только учитывать диапазон использования устройства и его возможности. Стоимость таких приспособлений варьируется от нескольких тысяч рублей до 20-25 тысяч долларов. Цена зависит от типа устройства, его функционала и производителя.

Анализ металлов и сплавов

Анализ металлов и сплавов решает аналитическими методами задачу определения элементного состава металлов и их сплавов. Главная цель - проверка сорта сплава или типа и композиционный анализ различных сплавов (количественный анализ).

  • волнодисперсионный анализ,
  • эмиссионный анализ,
  • рентгено-флоуресцентный анализ,
  • пробирный анализ.

Рентгенофлуоресцентный анализ

Портативный рентгефлуоресцентный спектрометр для анализа металлов и сплавов

Спектр отображающий сплав Al, Fe, Ti

Рентгенофлуоресцентный анализ проводится посредством воздействия на металл рентгеновским излучением и анализа флуоресценции при помощи современной электроники для достижения хорошей точности измерений.

Преимущества метода:

  • Неразрушающий анализ.
  • Возможно измерение многих элементов с высокой точностью.

Идентификация сплава достигается путем определения уникальной комбинации нескольких элементов в указанных композиционных диапазонах. Точный количественный анализ достигается путем использования соответствующих коррекций матрицы межэлементных влияний.

Анализируемый материал в течение нескольких секунд подвергается рентгенофлуоресцентному воздействию. Атомы элементов в материале возбуждаются и испускают фотоны с энергией, спецефичной для каждого элемента . Датчик отделяет и накапливает фотоэлектроны, получаемые от образца в энергетические области и, по мере общей интенсивности в каждой области, определяет концентрации элемента. Энергетическая область, соответствующая элементам , , , МС , , , , , , , , , , , , , , , , , , может быть эффективно проанализирована.

РФ анализтор состоит из центрального процессора, рентгеновской трубки, детектора, электронной памяти, хранящей градуировочные данные. Кроме того, память также используется для хранения и обработки данных марок сплавов и других коэффициентов, имеющим отношение к различным специальным режимам работы.

Как правильно, контроль за исследованием осуществляется посредством компьютерной программы, базирующейся на наладонном портативном компьютере (КПК), которая выдает пользователю изображение спектра и полученные значения содержаний элементов.

После проведения анализа значения сравниваются с базой данных по маркам сталей и производится поиск наиболее близкой марки.

Эмиссионный метод

Эмиссионный метод: Один из основных источников случайной погрешности измерений относительных концентраций примеси в эмиссионном спектральном анализе - это нестабильность параметров источника возбуждения спектра. Поэтому для обеспечения эмиссии примесных атомов из образца и последующего их оптического возбуждения используется низковольтный искровой, так называемый, C, R, L - разряд. При этом стабилизируется два параметра, от которых зависят процессы эмиссии и оптического возбуждения - напряжение и энергия в разрядном контуре. Это обеспечивает низкое среднеквадратичное отклонение (СКО) результатов измерений. Особенностью эмиссионого метода является количественное определение легких элементов в сплавах на основе железа (анализ серы, фосфора и углерода в стали). Существуют несколько видов приборов для эмиссионного анализа основанных на искровом и воздухо дуговом методе или их комбинации.

Пробирный метод

Пробирный метод: Пробирная плавка основана на физико-химических закономерностях восстановления металлов, шлакообразования и смачивания расплавленными веществами. Основные этапы пробирного анализ на примера сплава серебра и свинца:

  • Подготовка пробы
  • Шихтование
  • Тигельная плавка на свинцовый сплав
  • Сливание свинцового сплава в железные изложницы для охлаждения
  • Отделение свинцового сплава (веркблея) от шлака
  • Купелирование веркблея (удаление свинца)
  • Извлечение королька драгоценных металлов, взвешивание его
  • Квартование (добавление серебра, по необходимости)
  • Обработка королька разбавленной азотной кислотой (растворение серебра)
  • Гравиметрическое (весовое) определение серебра

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Анализ металлов и сплавов" в других словарях:

    - (радиоактивационный анализ), метод качественного и количественного элементного анализа в ва, основанный на активации ядер атомов и исследовании образовавшихся радиоактивных изотопов (радионуклидов). В во облучают ядерными частицами (тепловыми или … Химическая энциклопедия

    Сплавы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Термин «С.» первоначально относился к материалам с металлическими… …

    У этого термина существуют и другие значения, см. Проба (значения). Проба благородных металлов определение различными аналитическими методами пропорции, весового содержания основного благородного металла (золота, серебра, платины и т.п.) в… … Википедия

    - … Википедия

    Определение хим. состава и кол ва отдельных фаз в гетерогенных системах или индивидуальных форм соед. элементов в рудах, сплавах, полупроводниках и др. Объектом Ф. а. всегда является твердое тело. Название Ф. а. стало доминирующим, хотя нек рые… … Химическая энциклопедия

    Спектральный анализ, физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а.‒ спектроскопия атомов и молекул, его классифицируют по… … Большая советская энциклопедия

    I Спектральный анализ физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а. Спектроскопия атомов и молекул, его… … Большая советская энциклопедия

    Метод качеств. и количеств. анализа металлов и сплавов без предварит. отбора пробы (без взятия стружки). При анализе сплавов цветных и черных металлов одну или неск. капель к ты или др. р рителя помещают на тщательно очищенную пов сть… … Химическая энциклопедия

    Метод исследования атомного строения в ва путём экспериментального изучения дифракции рентгеновского излучения в этом в ве. Р. а. осн. на том, что кристаллы представляют собой естеств. дифракционные решётки для рентгеновского излучения. Р. а.… … Большой энциклопедический политехнический словарь


Химический состав вещества – важнейшая характеристика используемых человечеством материалов. Без его точного знания невозможно со сколько-нибудь удовлетворительной точностью спланировать технологические процессы в промышленном производстве. В последнее время требования к определению химического состава вещества еще более ужесточились: многие сферы производственной и научной деятельности требуют материалы определенной «чистоты» - это требования точного, фиксированного состава, а также жесткого ограничения на наличие примесей инородных веществ. Всвязи с этими тенденциями разрабатываются все боле прогрессивные методики определения химического состава веществ. К ним относится и метод спектрального анализа, обеспечивающий точное и быстрое изучение химии материалов.

Фантастика света

Природа спектрального анализа

(спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой излучение с от 3,8 *10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней ) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопииСолнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.