Сколько вырабатывает гэс. Как работает гидроэлектростанция? Это понятно даже детям! По заданию вснх

Ангара - река уникальная. Именно здесь расположен крупнейший комплекс гидро-электростанций в России : в конце 2012 года была запущена Богучанская ГЭС , а выше по течению располагаются Иркутская, Братская и Усть-Илимская станции. Причем, руководство СССР планировало построить на Ангаре семь станций. Зачем так много и продолжится ли освоение Ангары энергетиками?

ПО ЗАДАНИЮ ВСНХ

Первая попытка разработки схемы использования водной мощи Ангары была предпринята в 1920 году. Известный инженер доктор технических наук Август Вельнер представил в госкомиссию по электрификации России доклад Водные силы Ангары и возможности их использования», где рассказывалось о каскаде ГЭС на Ангаре. Смелый по замыслу проект давал бы возможность создать рядом с источником дешевой энергии каскад из металлургических и химических заводов.

Более детальная проработка вопроса началась в 1930 году, когда при Высшем совете народного хозяйства появилось Управление по изучению Ангарской проблемы. В 1955 году была утверждена схема использования Ангары. Но Нижняя Ангара в ней не рассматривалась – последней ГЭС на реке планировалась Богучанская.

В конце 1956 года в 38 км от устья в русле Ангары геологи нашли Горевское свинцово-цинковое месторождение (до сих пор одно из крупнейших в мире). Руководство Государственного производственного Комитета по энергетике и электрификации СССР поручило Гидропроекту разработать схему строительства ГЭС в нижней части Ангары и среднего течения Енисея с учетом особенностей добычи полезных ископаемых. С тех пор вопрос защиты этого месторождения от затопления стал определяющим в разработке схем гидроэнергетического использования Нижней Ангары.

К 1964 году после сравнения нескольких вариантов выявился приоритетный – строительство Средне-Енисейской ГЭС на Енисее выше впадения Ангары, на объединенном стоке двух рек. Ангару при этом ниже впадения Тасеевой предлагалось перекрыть глухой плотиной, а воды реки перебросить по специально прорытому каналу в водохранилище Средне-Енисейской ГЭС в обход Горевского месторождения.

РАЗВАЛ СССР - КРЕСТ НА ПРОЕКТЕ

В 1975 году утверждается технико -экономическое обоснование Средне-Енисейской ГЭС мощностью более 7000 МВт. Станцию предлагалось строить в две очереди. На первом этапе на Енисее в 17 км выше впадения в него Ангары сооружается Савинская ГЭС мощностью 3050 МВт. На втором этапе сооружается Нижне-Ангарская глухая плотина, соединительный канал через водораздел Тасеева-Ангара и вторая очередь Средне-Енисейской ГЭС мощностью более 4000 МВт, работающая на ангарской воде. Такой вариант позволял создать гидроэнергетический комплекс общей мощностью до 7440 МВт и выработкой до 34,3 млрд.кВт.ч. электроэнергии, обеспечить защиту Горевского месторождения от затопления и подтопления, решить проблемы судоходства в Енисее и Нижней Ангаре за счет затопления Казачинских порогов и создания судоходного канала Енисей-Ангара.

Однако, впоследствии концепция менялась неоднократно. В 1990 году Гидропроект подготовил очередную схему использования нижней Ангары в составе каскада из трех ГЭС: Стрелковской (1600 МВт), Выдумской (1320 МВт), Нижнеангарской (660 МВт). Но после распада страны дальнейшие разработки были приостановлены.

ЧАСТНЫЕ ИНЕВЕСТИЦИИ

Интерес к строительству ГЭС на Нижней Ангаре вновь возник в конце 2000-х. В 2008 году была одобрена «Генеральная схема развития объектов электроэнергетики до 2020 года», куда были включены две станции из схемы 1990 года: Нижнебогучанская (бывшая Нижнеангарская) и Мотыгинская (бывшая Выдумская). По Мотыгинской ГЭС институт «Ленгидропроект » разработал обоснование инвестиций (мощность станции была определена в 1082 МВт), а компания “РусГидро” начала оценку воздействия строительства новой ГЭС на окружающую среду. Но кризис 2008 года привел к остановке работ по этому проекту.

Гидроэнергетики говорят, что использование потенциала Нижней Ангары очень привлекательно: река «приручена» - зарегулирована уже построенными водохранилищами, что позволяет создать мощные ГЭС при относительно небольших площадях затопления. Общая выработка электроэнергии может быть сопоставима с Богучанской ГЭС. В настоящее время институт «Ленгидропроект» ведет исследования гидроэнергетического потенциала речного бассейна реки Ангары на участке от Богучанской ГЭС до устья. Итогом работы должна стать обновленная схема гидроэнергетического использования реки, с определением площадок размещения и параметров перспективных ГЭС.

К строительству ГЭС на Нижней Ангаре проявляет интерес и «Евросибэнерго ». Компания объявила о планах строительства Нижнеангарской ГЭС мощностью 600-1200 МВт.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию . Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках , сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Красноярская ГЭС

  • ГЭС (Плотина Гувера в Неваде)

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор . Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод , посредством которого вода , находящаяся под давлением , подводится ниже уровня дамбы или к водозаборному узлу ГЭС .

Необходимый напор воды образуется посредством строительства плотины , и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные - вырабатывают от 25 МВТ и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Как же такое устройство обеспечивает преобразование энергии воды в электроэнергию? В камере происходит взрыв определенного количества вещества. Взрывная волна жидкости проходит по стволу и попадает в цилиндр. Вследствие этого происходит вращение лопастей турбины, что, в свою очередь, является причиной работы гидрогенератора.

По мнению разработчиков проекта, самым важным условием для обеспечения эффективности изобретения является правильный расчёт веса взрывной волны, необходимого для производства волны, а не всплеска. Кроме того, должна быть точно рассчитана периодичность взрывов, что позволит избежать перерывов в действии устройства и не снижать скорость вращения лопастей. На стадии разработки находятся и другие варианты подобных установок.

Гидроаккумулирующие электростанции

Знак у Киевской ГАЭС

В период малых нагрузок гидроагрегаты станции заняты перекачкой воды из низового водоёма в верховой. Во время повышенной нагрузки происходит использование запасённой воды для выработки пиковой энергии. Обратимые гидроагрегаты обеспечивают работу турбинных и насосных режимов и представляют собой соединение синхронной электрической машины и гидравлической насос-турбины.

Энергия, которая тратится на перекачку, вырабатывается ТЭС во время пониженной загрузки, когда её стоимость не слишком высока. То есть, дешёвая ночная электроэнергия преобразовывается в дорогую. Экономическая эффективность, как можно убедиться, довольно высока. Несомненным преимуществом данного типа гидростанций является наличие высокого напора. Это позволяет устанавливать более эффективные аккумуляторы . Встречаются и станции смешанного типа. Часть установленных там гидроагрегатов способна работать в двух режимах: турбинном и насосном. Другая часть работает только в турбинном режиме. Использование таких станций позволяет накапливать большее количество воды и вследствие этого производить больше электроэнергии в периоды повышенной нагрузки.

Приливные электростанции

Приливная электростанция

Для создания экономичной приливной станции необходимы определённые природные условия. В частности, должен быть большой перепад уровней во время отлива и прилива (не менее шести метров), особенности береговой линии, которые позволяют создать плотину и водный бассейн соответствующих размеров.

На нашей планете такие места найти не так уж и просто. Это побережье американского штата Мэн, канадская провинция Нью-Брансуик, Персидский залив, отдельные регионы Аргентины, южная Англия, северная Франция, северные области европейской части России. Впрочем, даже станции, сооруженные в указанных регионах, не смогли бы достойно конкурировать с уже действующими ТЭС по стоимости производимой энергии .

Проекты приливных электростанций обычно предусматривают наличие двух бассейнов. Это верховой и низовой водоёмы. Каждый из них должен быть дополнен водопропускными отверстиями и затворами. Во время прилива верховой бассейн заполняется водой, а затем отдаёт всю воду низовому, который опорожняется при отливе.

История гидроэнергетики

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики. Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэнергетика прошла довольно долгий и интересный путь развития и продолжает развиваться, одаривая человека всё новыми возможностями. В данном разделе мы шаг за шагом пройдём путь, проделанный гидроэнергетикой в течение многих веков, рассмотрим этапы и особенности её развития, от водяных колёс, используемых в эпоху античности и Средневековья, до современных гидроэлектростанций, появившихся уже в двадцатом веке.

Античная и средневековая гидроэнергетика

Водяная мельница

Трудно сказать, когда человек начал использовать водные ресурсы для получения энергии. Самые ранние упоминания о подобных процессах относятся к четвёртому веку до нашей эры. При этом учёные склонны полагать, что использование воды происходило параллельно во многих регионах планеты. Кстати, археологи обнаружили свидетельства того, что водные ресурсы эксплуатировали и на территории бывшего Советского Союза: на территории современной Армении и в бассейне реки Амударья.

Древние греки использовали водяное колесо для облегчения некоторых видов тяжёлого ручного труда. Например, это приспособление осуществляло перемол зерна. Постепенно технологии совершенствовались, количество водяных колёс в европейских государствах неуклонно росло. Так, в одиннадцатом веке в Англии и Франции одна мельница приходилась на двести пятьдесят человек. Согласно утверждениям историков, приблизительно в тринадцатом веке водяные мельницы появляются в средневековой Руси, а точнее – в её юго-западных и северо-восточных регионах.

С течением времени увеличивались и сферы применения устройств. Водяные мельницы обеспечивали работу сукновальных фабрик и откачивающих насосов, участвовали в распилке леса, помогали человеку варить пиво, применялись на маслобойнях. До восемнадцатого столетия применялись исключительно колёса нижнего боя. Позже появились среднебойные и нижнебойные водяные колёса.

Гидроэнергетика в девятнадцатом столетии

Водяная турбина

Достижения предыдущих столетий уже не могли удовлетворять потребности человека в девятнадцатом веке. Толчок дальнейшему развитию гидроэнергетики дало изобретение водяных турбин . Хотя попытки создания более совершенного по сравнению с водяным колесом механизма предпринимались и до этого. Так, ещё в шестнадцатом веке на Урале использовали быстроходное мутовчатое колесо с вертикальным расположением вала. В таких механизмах вода попадала на изогнутые лопасти колеса из специального желоба.

Впоследствии аналогичным образом были устроены свободноструйные водяные гидротурбины . Но полноценная водяная турбина была создана только в начале девятнадцатого века. Её создание – заслуга нескольких талантливых изобретателей. Одним из них русский исследователь И. Сафонов, который в 1837 году произвёл установку сконструированной им водяной турбине на реке Нейве. Два года спустя Сафонов усовершенствовал собственное изобретение, установив несколько переделанную турбину на одном из местных заводов. Параллельно с Сафоновым над созданием водяных турбин работал французский учёный Фурнейрон. Изобретённое им устройство было представлено в 1834 году. Изобретения, сделанные обоими учёными, быстро завоевали популярность, и в течение последующих пятидесяти лет появляется множество самых разнообразных турбин.

Уже в конце девятнадцатого века происходит событие, которое фактически откроет современный этап в истории мировой гидроэнергетики. В 1891 году русский инженер М.О. Доливо-Добровольский, проживающий в Германии и покинувший Россию по причине своей политической неблагонадёжности, прибыл в город Франкфурт-на-Майне для участия в электротехнической выставке. Там он должен был продемонстрировать свой изобретение – двигатель переменного тока . Тогда подобный аттракцион вообще был в новинку, но автор решил дополнить его ещё одним сооружением.

Это была гидроэлектростанция. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала водяная турбина небольших размеров. Вырабатываемая электроэнергия поступала на территорию выставки посредством линии передачи. Её длина равнялась 175 километрам. Сегодня никого не удивляют линии протяжённостью в несколько тысяч километров, но в те времена всё это было бесспорной сенсацией. Эпоха гидроэлектростанций началась.

Гидроэлектроэнергетика в двадцатом веке

ГЭС Гувера США

Несмотря на открытие Доливо-Добровольского, дальнейшее развитие гидроэнергетики было замедлено некоторыми объективными факторами. Строительство крупных гидроэлектростанций, которые были бы действительно эффективными, оказалось предприятием более сложным, чем экспериментальная установка, показанная на выставке. Ведь чтобы заставить вращаться большие турбины, необходим значительный запас воды.

В начале двадцатого века такое строительство представлялось довольно сложным. За первые два десятилетия нового века было построено всего лишь несколько гидроэлектростанций. Но это было только начало. Уже в тридцатых годах были сооружены крупные станции, например, ГЭС Гувер в США мощностью в 1,3 Гиговатт.

Другим ярким событием в истории американской гидроэнергетики стало открытие гидроэлектростанции Адамс, расположенной на Ниагарском водопаде. Её мощность достигала 37 МВт. Запуск таких мощных гидроэлектростанций обусловил увеличение объёмов потребляемой энергии в промышленно развитых странах, что, в свою очередь, дало толчок программам освоения гидроэнергетических потенциалов.

Усть-Каменогорская ГЭС

К началу двадцатого века развитие российской гидроэнергетики было весьма замедленным. Так, в 1913 году на территории Российской империи функционировало около пятидесяти тысяч гидросиловых установок. Их общая мощность составляла около миллиона лошадиных сил. При этом около семнадцати тысяч установок были оборудованы гидротурбинами .

Суммарная годовая выработка электроэнергии на всех гидроэлектростанциях не превышала тридцать пять миллионов киловатт в час при установленной мощности около 16 МВт. В то же время во многих европейских странах общая мощность составляла приблизительно 12000 МВт. Ситуация изменилась после Октябрьской революции. Новая власть хорошо понимала важность развития отрасли.

Уже 13 июня 1918 года было принято решение о начале строительства Волховской гидроэлектростанции, которая стала первым проектом советской гидроэнергетики, а её мощность равнялась 58 МВт. Уже в первые годы советской власти был разработан план электрификации страны (ГОЭЛРО), который был утверждён 22 декабря 1920 года. Одна из глав плана называлась «Электрификация и водная энергия». В ней отмечалось, что использование гидроэлектростанций может представлять выгоду в случае комплексного использования.

План предусматривал сооружение ГЭС общей мощностью в 21254 тысяч лошадиных сил. При этом в европейской части России общая мощность станций составит 7394, в Туркестане – 3020, в Сибири – 10840 тысяч лошадиных сил. Предусматривалось строительство десяти гидроэлектростанций, суммарная мощность которых составит 640 МВт.

Первым советской гидроэлектростанцией стала Днепровская гидроэлектростанция имени Ленина в Запорожье. Ещё в 1921 году Ленин подписал решение о начале строительства, а само строительство было начато в 1927 году. Запуск первого агрегата был произведён в 1932 году, а достичь проектной мощности удалось в 1939 году. Она составила 560 МВт. При возведении плотины были затоплены знаменитые пороги Днепра, что сделало реку полностью судоходной.

За несколько десятилетий Советский Союз стал одним из лидеров мировой гидроэнергетики. Например, в начале семидесятых советская гидроэнергетика по установленной мощности уступала только американской. Строительство гидроэлектростанций велось на Волге, Каме, Дону, Днепре, Свири и других крупных реках .

Это позволило превратитить их в водные магистрали Европейской части страны, существенно повысить уровень воды в реках и получить в результате целостную судоходную систему, которая соединяла между собой Каспийское, Чёрное, Азовское, Балтийское и Белое моря. К концу семидесятых годов двадцатого века были сооружены самые большие гидроэлектростанции в мире. Это Саяно-Шушенская и Красноярская, расположенные на реке Енисей, Братская и Усть-Илимская (река Ангара), Нурекская (река Вахш), Волжская.

Мировая гидроэнергетика в 21 веке

В начале двадцать первого века гидроэнергетика обеспечивает до шестидесяти трёх процентов возобновляемой энергии в мире. Это девятнадцать процентов всей мировой электроэнергии. Установленная гидроэнергетическая мощность составляет 715 Гвт.

Такие страны как Норвегия, Исландия и Канада являются лидерами по выработке гидроэнергии на гражданина. Наиболее активно ведет строительство гидроэлектростанций Китай. Для этого государства гидроэнергия является наиболее перспективным источником энергии и, очевидно, он в скором времени станет основным. Кроме того, именно Китай является мировым лидером по количеству малых гидроэлектростанций.

Наиболее крупные ГЭС расположены на территории Китая (Санься на реке Янцзы, Бразилии (Итайпу на реке Парана и Тукуруи на реке Токантин), Венесуэлы (Гури на реке Карони). Развивается гидроэнергетическая отрасль и в России. Сегодня на территории Российской Федерации функционируют сто две гидроэлектростанции.

Суммарная мощность всех работающих российских гидроагрегатов – сорок пять миллионов киловатт (это пятое место в мире). При этом доля гидроэлектростанций в общем объёме получаемой российской энергии составляет двадцать один процент. А это не так уж и много, особенно, учитывая то, что Россия находится на втором месте по экономическому потенциалу гидроресурсов (около 852 миллиардов киловатт в час). Но освоены эти ресурсы лишь на двадцать процентов.

Перспективы гидроэнергетики

Без сомнения, энергообеспечение – одна из наиболее актуальных проблем человечества. Мировые запасы нефти и газа стремительно уменьшаются и недалёк тот день, когда они будут полностью исчерпаны. Это понимают все, и поэтому с каждым годом всё большее число специалистов изучает возможности их равноценной замены. Сегодня существует несколько направлений альтернативной энергетики: использование солнечной энергии и энергии ветра, биоэнергетика, геотермальная энергетика.

Каждое их этих направлений отличается определёнными достоинствами и недостатками. И поэтому необходимо определиться: какой альтернативный источник энергии лучше всего подходит для удовлетворения нужд человечества и в то же время наносит минимальный ущерб природе.

Потенциал мировой гидроэнергетики

Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков , ежегодно выпадающих во всём мире.

С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10 000 – 20 000 миллиардов киловатт в час (приведены данные ООН).

Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день.

Вместе с тем, не теряет актуальность вопрос: какую долю этого природного богатства человечество может позволить себе использовать? Для ответа на этот вопрос необходимо представлять возможные последствия работы гидроэлектростанций для окружающей среды.

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в водохранилищах и развивается рыболовство.

Экологические аспекты использования гидроэнергетики

Вне всяких сомнений, гидроэнергетика в перспективе должна не оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко.

. Вы можете помочь проекту, исправив и дополнив её.

21/07/2010

В 1920 году был принят план ГОЭЛРО. Спустя 90 лет после строительства первой советской ГЭС самое время разобраться, нужна ли гидротехника сегодня – во времена инноваций, модернизаций и нанотехнологий? Является ли специальность гидротехника перспективной, или через десяток лет о ней будут говорить со снисходительной улыбкой. Ответы Online812 искал в Санкт-Петербургском государственном политехническом университете – у доктора технических наук, профессора инженерно-строительного факультета (раньше назывался гидротехническим) СПбГПУ Владимира БУХАРЦЕВА.


- Гидротехника - это еще актуально? Это только ГЭС, или ее область гораздо шире?
- Важнейшими отраслями гидротехники являются: гидроэнергетика, инженерные мелиорации, водный транспорт и т.д. Еще - борьба с вредными проявлениями водной стихии, то есть наводнениями и паводками. Эти разделы гидротехники будут востребованы и через 20 лет, и в более далекой перспективе.

- В чем основное преимущество гидроэлектростанций? В том, что воды у нас больше, чем солнца?
- В эффективности и надежности. Во всем российском энергетическом комплексе именно гидроэлектростанции создают резерв регулировочной мощности. А это - ключевой элемент обеспечения системной надежности. Вспомните: когда произошла авария на Саяно-Шушенской ГЭС, регион ни на минуту не оставался без света. Потому что соседние, расположенные на Енисее электростанции тут же восполнили этот провал. Из всех существующих типов электростанций именно ГЭС являются наиболее маневренными, способными моментально включить дополнительный энергоблок и существенно увеличить выработку электроэнергии, если будет такая необходимость, если возникнет пиковая нагрузка. Мне кажется, в будущем у нас будут функционировать электростанции двух типов: атомные, которые будут давать основной объем энергии, постоянный, мощный поток, и гидростанции - для дополнительной нагрузки. А может, появятся другие виды энергии, о которых сейчас ничего не известно. Например, водородная, которая сейчас нигде толком не применяется, хотя водород можно получать прямо из воздуха.

- А ветряные и солнечные станции?
- Ветровая и солнечная энергетика составляют около 3 - 5 процентов в общем балансе и составить конкуренцию гидроэнергетике не могут. И потом они ведь требуют отчуждения земель, так что быстро наводнить ими все регионы не получится. Хотя как дополнительный вид энергетики - они могли бы работать очень хорошо, обслуживая один блок - один дом. Например, там, где подвод ЛЭП от основной электростанции слишком затруднен и затратен. Представьте себе маяк в пятистах километрах от ближайшего населенного пункта. Поставить рядом с ним вертушку и генератор - и маяк будет светить сам.

- Геотермальная энергия у нас не применяется?
- Вулканы - нет, а вот гейзеры, которые работают постоянно, способны и отапливать помещения, и даже давать электрический ток. Кажется, на Камчатке есть несколько небольших комплексов, которые используют такого вида энергию.

Говорят, в некоторых южных деревнях люди перекрывают речки, ставят самодельные генераторы и - пожалуйста, имеют собственную гидроэлектростанцию, правда, на общественном русле. Это возможно?
- Здесь даже не нужен самодельный генератор, такие игрушки продаются в магазинах в Европе или Америке. Серьезно к этому относиться, конечно, нельзя… Но если у вас проходит ручей по дачному участку и вы желаете получить альтернативный источник энергии - можете попробовать. Высота «сооружения» между верхним и нижним бьефом должна составлять не меньше двух метров, тогда есть шанс, что турбина будет работать.

- В мире в целом какое отношение к гидроэнергетике?
- По данным на 2005 год, она обеспечивает до 19 процентов всей электроэнергии в мире. Установленная мощность гидроустановок достигает 715 ГВт. В пересчете киловаттов на душу населения лидерами по выработке гидроэнергии являются Норвегия, Исландия и Канада. Сейчас самое активное гидростроительство ведет Китай, где построена примерно половина всех малых ГЭС мира и самая крупная ГЭС в мире - «Три ущелья» на реке Янцзы. Как все страны с быстроразвивающейся экономикой, Китай сделал ставку на ГЭС, и сейчас там гидравлические станции - едва ли не единственный потенциальный источник энергии. Гидроэлектростанции - очень капиталоемкое предприятие: строительство затратное, зато обслуживание стоит копейки. Но вот не все страны могут себе это позволить.

- В Африке гидроэлектростанции строились с помощью российских специалистов. Так и будет дальше?
- У меня есть опасения, что их рано или поздно вытеснят китайцы. Но в Африке действительно подходят к этому вопросу очень серьезно. Наш выпускник Хамиди Ахмет, построивший ГЭС в Марокко, рассказывал, что его статус в те годы соответствовал примерно министерскому. Например, ему был положен личный самолет.

- А европейские страны захотят потом вернуться от атомных станций к ГЭС - или это уже невозможно?
- Во многих странах гидроэнергетический потенциал полностью задействован, поэтому новые станции построить невозможно. Швейцария использует 99 процентов потенциала, Франция - 89%, США и Япония - 82, Канада - 66, Бразилия - 44. А Россия только 20. Строительство ГЭС будет неизбежно развиваться на Дальнем Востоке и в Восточной Сибири - кстати, там гидроэнергетический потенциал используется всего на пять процентов. Кроме того, засуха 2010 года напомнила, что следует развивать и мелиоративное строительство - создание поливных площадей для сельскохозяйственного производства в южных и центральных районах России. Я, кстати, считаю, что идея с поворотом стока сибирских рек для спасения Аральского моря - не так уж безумна, и к ней все равно вернутся не в этом, так в следующем десятилетии. И сейчас разговоры об этом периодически ведутся.

- То есть мы будем своей водой спасть среднеазиатские республики?
- И Россия обретет колоссальный рычаг для влияния в политике всех среднеазиатских государств.

С появлением любой ГЭС страдает окружающая среда. Перекрываются реки, затапливаются огромные территории, меняются флора и фауна, а в дальнейшем - климат. Это может служить ограничением для развития гидроэнергетики?
- Отчуждения территорий требуют практически все виды хозяйственной деятельности: строительство городов, дорог, металлургических комбинатов. Любой шаг человека на земле влияет на окружающую среду. Но человек не будет так ходить, чтобы наступать себе же на ногу. На стадии проектирования оцениваются все объекты предполагаемого строительства, взвешиваются все положительные эффекты, соизмеряются с отрицательным влиянием. Только после такого анализа решения принимается. Или не принимаются. Ограничением для развития гидроэнергетики может явиться только ограничение потребностей общества. Правда, сам я не в восторге от малой гидроэнергетики на небольших реках. Вот там рыбному промыслу может быть нанесен серьезный урон, а энергия меж тем будет получена небольшая. Впрочем, на большинстве станций у нас осознали опасность, которая может быть причинена породам ценных рыб, и стараются не ставить преграды на пути их миграции. Чтобы спасти, скажем, осетра или лосося, на таких реках, как Дон, Волга, Днепр, Обь, Тулома, Кура, Енисей, Даугава, построили рыбоходы и рыбоподъемники - специальные пропускные пункты.

- Енисей в районе Саяно-Шушенской ГЭС превратился в судоходный тупик. Неужели это экономически оправдано?
- Такая проблема возникает при строительстве всех гидроэлектростанций. И их решают. Ну, в районе Саяно-Шушенской ГЭС особого судооборота нет, дикий край. В других местах проблему стараются решать. В Красноярске работает судоподъемник, который поднимает и опускает корабли. Где-то делают отводные каналы. Но проще организовать перевалочный пункт с разгрузкой баржи, погрузкой содержимого в фуры или железнодорожный состав…

- В этом веке у нас уже не будет гигантских строек гидроэлектростанций?
- гигантскими кажутся только для обывателей. В мире есть ГЭС, в разы превышающие нашу Саяно-Шушенскую и по мощности, и по объему водохранилища. Сейчас тоже идут большие стройки. Например, Зарамагский гидроузел и Нижне-Черкесский, Мотыгинская, Нижне-Бурейская ГЭС, Богучанская ГЭС, которая уже достраивается.

- Куда развивается гидроэнергетика, и как будут выглядеть ГЭС через 30 - 50 лет?
- Принцип останется тот же: преображение механической энергии водного потока в электрическую. Внешний облик будет прежним, модернизации подвергнется оборудование, позволяющее выйти на более высокий КПД. Например, появятся новые нанотехнологичные материалы с пониженным коэффициентом трения, из которых будут изготавливать турбины. Хотя сейчас слабо верится.

Считается, что главная проблема российских ГЭС - они построены давно и обветшали. Что с ними теперь делать - восстанавливать или строить новые?
- Проблема не в самих ГЭС, а в отношении к ним. Действительно, многие ГЭС, построенные по плану ГОЭЛРО, трудятся уже больше 75 лет. Но на тех ГЭС, где регулярно ведутся планово-предупредительные ремонтные работы, симптомов обветшалости нет. Ведь Петропавловскую крепость ветхой не назовешь. И Исаакиевский, который воздвигнут на деревянных сваях. Наиболее уязвимым элементом ГЭС является ее оборудование - турбины, генераторы, трансформаторы. Их меняют… Недавно обновили на Светогорской и Лесогорской ГЭС.

- А почему тогда произошла авария на Саяно-Шушенской? Или это загадка?
- Никакой загадки нет и не было. Причин тут две. Низкая профессиональная компетенция обслуживающего персонала, точнее, людей, от которых зависит принятие решения. И жадность олигархов, которые стремились максимально сократить обслуживающий персонал, в том числе тот, от которого зависела надежная работа ГЭС.

- Тот айсберг, который нарос на плотине СШГЭС за эту зиму, угрожал ее состоянию - дамбу могло прорвать?
- С точки зрения механики увеличение вертикальной нагрузки, каковой являлись наледи на ледосбросе, увеличивают устойчивость плотины. Горизонтальная нагрузка от давления воды со стороны водохранилища в течение зимы не возрастала. Поэтому опасности не было.

СПРАВКА
План ГОЭЛРО, рассчитанный на 10 - 15 лет, предусматривал строительство 30 районных электрических станций (20 ТЭС и 10 ГЭС) общей мощностью 1,75 млн кВт. В числе прочих намечалось построить Штеровскую, Каширскую, Горьковскую, Шатурскую и Челябинскую районные тепловые электростанции, а также ГЭС - Нижегородскую, Волховскую, Днепровскую, две станции на реке Свирь и др. План в основном был перевыполнен к 1931 году. Выработка электроэнергии в 1932 году по сравнению с 1913 годом увеличилась не в 4,5 раза, как планировалось, а почти в 7 раз: с 2 до 13,5 млрд кВт.ч.

Для разработки проекта электрификации 21 февраля 1920 года была создана Государственная комиссия по электрификации России (ГОЭЛРО). В декабре 1920 года выработанный комиссией план был одобрен VIII Всероссийским съездом Советов, а за месяц до этого В. Ленин сказал, что «коммунизм - это есть Советская власть плюс электрификация всей страны» Впрочем, подготовка проекта масштабной электрификации России велась еще до революции 1917 года.

ГИДРОЭНЕРГЕТИКА В МИРЕ
Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме нее этот показатель высок в Норвегии, Канаде, Швеции. Наиболее активное гидростроительство на начало 2000-х ведет Китай.

Страны - крупнейшие производителями гидроэнергии
Страна Потребление гидроэнергии в ТВт.ч
1 Китай 585
2 Канада 369
3 Бразилия 364
4 США 251
5 Россия 167
6 Норвегия 140
7 Индия 116
8 Венесуэла 87
9 Япония 69
10 Швеция 66
11 Франция 63

ПЛЮСЫ И МИНУСЫ ГИДРОЭНЕРГЕТИКИ
- Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии.

Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций.

Строительство ГЭС более капиталоемкое.

Часто ГЭС удалены от потребителей.

Водохранилища занимают значительные территории, с 1960-х годов в СССР используются защитные сооружения, ограничивающие площадь водохранилища.

Плотины изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище.


Зейская ГЭС — одна из крупнейших в России и вторая по мощности на Дальнем Востоке. Она находится в Амурской области, у города Зея и играет особую роль в дальневосточной энергосистеме.

Зейская ГЭС в Амурской области открыла историю большой гидроэнергетики на Дальнем Востоке 35 лет назад. Она построена в условиях сурового климата, оригинальна по конструкции и уникальна по техническому решению.

«Дорожка» водосброса:

В здании ГЭС установлено 6 гидроагрегатов, общая мощность которых составляет 1 330 МВт, среднегодовая выработка 4 910 миллионов киловатт часов. На Дальнем Востоке по мощности Зейскую ГЭС с недавних пор превосходит только Бурейская, о которой тоже скоро будет рассказ.

Зейская ГЭС имеет ряд уникальных особенностей. Плотина гидроэлектростанции имеет высоту почти 116 метров. Изюминкой станции является ее турбины. Зейская ГЭС первая в России с диагональными гидротурбинами. Такие турбины конструктивно сложнее, но зато могут эффективно работать при больших колебаниях напора воды.

Еще одна забавная особенность — целая колония сусликов живет на территории Зейской ГЭС:

Это такие некрупные грызуны семейства беличьих. Они известны своей привычкой при опасности вставать «столбиком» и издавать характерные свистящие звуки. (Фото Bob Cuthill):

Затворы — устройства, позволяющие регулировать пропуск воды через плотину:

Вид с гребня плотины:

С крана, находящегося на гребне, можно оценить перепад уровня воды, созданный плотиной:

Машинный зал:

Шахта гидрогенератора:

И вот мы попадаем в спиральную камеру , в начало начал — место, где вода движется на турбину и раскручивает ее. Даже представить сложно масштабы происходящего здесь процесса, во время работы генератора

Водовод Зейской ГЭС:

Это место, где можно увидеть ротор. Людям во время работы генератора находиться внутри запрещено, но если очень хочется, то ненадолго можно. Скорость вращения этой махины 136.4 оборота в минуту:

Но самое интересное — это внутренние пространства плотины. За счет того, что плотина массивная, внутри нее очень много пустого пространства. На нижних этажах достаточно сыро, стоит небольшой туман и пахнет, как в метрострое:

Этажи», которых насчитывается целых 6!

Цепь от старой набережной, разрушенной в 2007 году мощнейшим паводком:

Зейская ГЭС со включенной праздничной подсветкой:

Скульптура Зея, установленная здесь в 1981 году. Стрелы символизируют энергию, которую дает покоренная человеком своенравная горная река Зея:

Трансформаторы:

Виды моей родной Амурской области вокруг плотины:

Это была небольшая экскурсия на Зейскую ГЭС.

Бурейская ГЭС — это самая большая ГЭС на Дальнем Востоке и одна из самых современных электростанций в России. Познакомимся с ней поближе.

Бурейская ГЭС расположена в Амурской области на реке Бурея, что на языке эвенков означает «большая река ». Река берет свое начало в горах на высоте 1700 м в стыке хребтов Эзоп и Дуссе-Алинь.

Бетонная гравитационная плотина высотой 140 метров является самой высокой в нашей стране плотиной подобного типа:

Имея установленную мощность 2010 МВт, Бурейская ГЭС входит в десятку крупнейших гидроэлектростанций России. Водосброс ГЭС сконструирован таким образом, что потоки воды сталкиваются друг с другом и взаимно гасят свою энергию:

Вид с гребня плотины:

Водоводы:

140 метров:

Кран на гребне плотины:

Вид на ГЭС с левого берега:

Строительство береговых укреплений:

Внутри: красивый и просторный холл:

Машинный зал:

Мощность одного такого гидроагрегата составляет 335 МВт. Это много. Например, мощность всей ГЭС составляет 455 МВт:

Спиральная камера:

Пульт управления:

Одно из самых интересных и красивых мест на самой большой — это КРУЭ 500. Расшифровывается как «комплектное распределительное устройство с элегазовой изоляцией на 500 кВ». Неспециалистом это мало что говорит:

Интересно, что если вдохнуть в себя элегаз, то голос станет низким, превратится в рык (действие, противоположное действию гелия):

Тоннели внутри плотины:

Подробности Опубликовано 04.06.2014 14:36

Казалось бы, гидроэлектростанция - идеальное инженерное сооружение.

Кроме того, что они дают электроэнергию не выбрасывая угарного газа и не оставляя после себя радиоактивных отходов, есть еще много преимуществ.

В результате постройки ГЭС создаются водохранилища, в которых успешно можно разводить рыбу. На берегу этих искусственных водоемов высаживаются деревья, образуя парки для отдыха людей.

Иногда кажется что создав ГЭС человек наконец научился использовать в своих целях окружающую среду, не разрушая её.

Правительства всех стран активно финансируют строительство новых гидроэлектростанций, демонстрируя свое стремление к экологическому прогрессу.

Но используют ли данные электростанции "возобновляемые ресурсы планеты", как их принято называть. Ведь круговорот воды в природе не останавливаются и реки продолжают наполнятся водой.

Есть некоторые аспекты, которые руководства стран не любят придавать гласности. А именно, как влияют на природу огромные платины, строящиеся для работы электростанций. Ведь для того, чтобы ГЭС начала давать электроэнергию необходимо накапливать воду в искусственных водохранилищах, а затем сбрасывать её через гидротурбины.

Так ли безвредны эти платины для природы на самом деле?

Так, например, в Бразилии уникальный тропический лес Шингу оказался на грани вымирания после начала строительства там платины электростанции на местной реке.


В апреле 2014 года в Малазии проходила энергетическая неделя, на которой обсуждался проект строительства плотин на реке Барам на острове Барнео. Строительство патин должно осуществляться в рамках программы "коридора возобновляемой энергетики". Электроэнергия, получаемая от ГЭС будет использована как для своих нужд, так для экспорта.

Многие участники скептически отнеслись к такой инициативе, указывая на то, что строительство приведет к глобальным изменениям экосистемы. По мнению некоторых ученых термин "возобновляемые ресурсы" здесь не применим, поскольку такие масштабные вмешательства в природу могут привести к вымиранию некоторых видов животных и растений.

По мнению критиков, нельзя трогать русла таких крупных рек как Барам и Шингу, лучше строить гидроэлектростанции на менее крупных реках, тогда последствия будут не настолько разрушительными. Электроэнергия полученная на этих ГЭС должна быть использована для питания прилегающих регионов, а не идти на экспорт.