Экстремальное управление проектами - дуг декарло. Экстремальное управление проектами Работа оптимальной системы с экстремальным процессом управления

1. Я (Клиент), настоящим выражаю свое согласие на обработку моих персональных данных, полученных от меня в ходе отправления заявки на получение информационно-консультационных услуг/приема на обучение по образовательным программам.

2. Я подтверждаю, что указанный мною номер мобильного телефона, является моим личным номером телефона, выделенным мне оператором сотовой связи, и готов нести ответственность за негативные последствия, вызванные указанием мной номера мобильного телефона, принадлежащего другому лицу.

В Группу компаний входят:
1. ООО «МБШ», юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
2. АНО ДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

3. В рамках настоящего соглашения под «персональными данными» понимаются:
Персональные данные, которые Клиент предоставляет о себе осознанно и самостоятельно при оформлении Заявки на обучение/получение информационно консультационных услуг на страницах Сайта Группы компаний
(а именно: фамилия, имя, отчество (если есть), год рождения, уровень образования Клиента, выбранная программа обучения, город проживания, номер мобильного телефона, адрес электронной почты).

4. Клиент — физическое лицо (лицо, являющееся законным представителем физического лица, не достигшего 18 лет, в соответствии с законодательством РФ), заполнившее Заявку на обучение/на получение информационно-консультационных услуг на Сайта Группы компаний, выразившее таким образом своё намерение воспользоваться образовательными/информационно-консультационными услугами Группы компаний.

5. Группа компаний в общем случае не проверяет достоверность персональных данных, предоставляемых Клиентом, и не осуществляет контроль за его дееспособностью. Однако Группа компаний исходит из того, что Клиент предоставляет достоверную и достаточную персональную информацию по вопросам, предлагаемым в форме регистрации (форма Заявки), и поддерживает эту информацию в актуальном состоянии.

6. Группа компаний собирает и хранит только те персональные данные, которые необходимы для проведения приема на обучение/получения информационно-консультационных услуг у Группы компаний и организации оказания образовательных/информационно-консультационных услуг (исполнения соглашений и договоров с Клиентом).

7. Собираемая информация позволяет отправлять на адрес электронной почты и номер мобильного телефона, указанные Клиентом, информацию в виде электронных писем и СМС-сообщений по каналам связи (СМС-рассылка) в целях проведения приема для оказания Группой компаний услуг, организации образовательного процесса, отправки важных уведомлений, таких как изменение положений, условий и политики Группы компаний. Так же такая информация необходима для оперативного информирования Клиента обо всех изменениях условий оказания информационно-консультационных услуг и организации образовательного и процесса приема на обучение в Группу компаний, информирования Клиента о предстоящих акциях, ближайших событиях и других мероприятиях Группы компаний, путем направления ему рассылок и информационных сообщений, а также в целях идентификации стороны в рамках соглашений и договоров с Группой компаний, связи с Клиентом, в том числе направления уведомлений, запросов и информации, касающихся оказания услуг, а также обработки запросов и заявок от Клиента.

8. При работе с персональными данными Клиента Группа компаний руководствуется Федеральным законом РФ № 152-ФЗ от 27 июля 2006г. «О персональных данных».

9. Я проинформирован, что в любое время могу отказаться от получения на адрес электронной почты информации путем направления электронного письма на адрес: . Также отказаться от получения информации на адрес электронной почты возможно в любое время, кликнув по ссылке «Отписаться» внизу письма.

10. Я проинформирован, что в любое время могу отказаться от получения на указанный мной номер мобильного телефона СМС-рассылки, путем направления электронного письма на адрес:

11. Группа компаний принимает необходимые и достаточные организационные и технические меры для защиты персональных данных Клиента от неправомерного или случайного доступа, уничтожения, изменения, блокирования, копирования, распространения, а также от иных неправомерных действий с ней третьих лиц.

12. К настоящему соглашению и отношениям между Клиентом и Группой компаний, возникающим в связи с применением соглашения, подлежит применению право Российской Федерации.

13. Настоящим соглашением подтверждаю, что я старше 18 лет и принимаю условия, обозначенные текстом настоящего соглашения, а также даю свое полное добровольное согласие на обработку своих персональных данных.

14. Настоящее соглашение, регулирующее отношения Клиента и Группы компаний действует на протяжении всего периода предоставления Услуг и доступа Клиента к персонализированным сервисам Сайта Группы компаний.

ООО «МБШ» юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
ООО «МБШ Консалтинг» юридический адрес: 119331, г. Москва, проспект Вернадского, д. 29, офис 520.
ЧУДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА — СЕМИНАРЫ», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

Цель работы

Ознакомиться с построением шаговых экстремальных систем управления при управлении динамическими объектами с запаздыванием.

Теоретическая часть

В любом производстве (на заводе, комбинате) имеется некото­рый ведущий технико-экономический показатель (ТЭП), полно­стью характеризующий эффективность работы этого производства. Этот ведущий показатель выгодно поддерживать на экстремальном значении. Таким обобщенным показателем может быть прибыль предприятия.

Для всех технологических процессов (в цехах, отделениях), входящих в состав производства, исходя из ведущего ТЭП, можно сформулировать свои частные ТЭП (например, себестоимость еди­ницы продукции при заданной производительности). В свою оче­редь технологический процесс обычно можно разбить на ряд участ­ков (технологических агрегатов), для каждого из которых также можно найти критерий оптимальности Q. Достижение экстремума Q будет приближать к экстремуму частный ТЭП процесса и веду­щий ТЭП производства в целом.

Критерий оптимальности Q может быть непосредственно ка­ким-либо технологическим параметром (например, температура фа­кела топочного устройства) либо некоторой функцией, зависящей от технологических параметров (например, к.п.д., тепловой эффект реакции, выход полезного продукта за заданный промежуток вре­мени и т.д.).

Если критерий оптимальности Q является функцией некоторых параметров объекта, то для оптимизации этого объекта может быть применена система экстремального регулирования (СЭР).

В общем случае величина критерия оптимальности зависит от изменения ряда входных параметров объекта. Имеется много объ­ектов управления, у которых величина критерия оптимальности Q зависит в основном от изменения одного входного параметра. При­мерами таких объектов могут служить различного рода топочные устройства, каталитические реакторы, химводоочистка на тепловых электростанциях и многие другие.

Итак, системы экстремального регулирования предназначены для поиска оптимальных значений управляющих воздействий, т.е. таких значений, которые обеспечивают экстремум некоторого кри­терия Q оптимальности процесса.



Системы экстремального регулирования, которые предназначены для оптимизации объекта по одному входному каналу, называются одноканальными. Такие СЭР получили наибольшее распростране­ние.

При оптимизации объектов, обладающих значительной инерци­онностью и чистым запаздыванием, целесообразно применение ша­говых экстремальных систем, которые воздействуют на управ­ляемый вход объекта через дискретные промежутки времени.

При исследовании экстремальной системы объект оптимизации в большинстве случаев удобно представить последовательным соединением трех звеньев: входного линейного инерционного звена, экстремальной статической характеристики у = F (х ) и выходного линейного инерционного звена (рис. 1). Такую структурную схему замещения можно обозначить ЛНЛ.

Рис. 1 Схема экстремального объекта ЛНЛ

Коэф­фициенты усиления обоих линейных звеньев удобно принимать равными единице. Если инерционность входного линейного звена пренебрежи­мо мала по сравнению с инерционностью выходного линейного звена, объект можно пред­ставить схемой замещения НЛ; если инерционность вы­ходного линейного звена пренебре­жимо мала, - схемой замещения ЛН. Собственные инерционные свой­ства объекта обычно представляют­ся выходным инерционным звеном; к этому же звену отно­сится инерционность измерительных устройств системы.



Входное линейное звено обычно появляется в структурной схеме объ­екта тогда, когда исполнительный механизм (ИМ) экстремальной си­стемы воздействует на собственно объект оптимизации через звено, обладающее инерционностью, напри­мер, если входным параметром опти­мизируемого объекта является тем­пература, а ИМ воздействует на из­менение ее через теплообменник. К входной линейной части относят и инерционность исполнительного меха­низма.

Следует отметить, что промежу­точные между линейными и нели­нейными звеньями координаты объ­екта управления в подавляющем большинстве случаев замерить не­возможно; это легко осуществить лишь при моделировании системы.

В некоторых случаях определить структурную схему замещения объ­екта можно лишь экспериментально.

Для этого следует изменить входную координату объекта v 1 , соответствующую значению выхода z 1 , до v 2 (рис. 2,а ), при котором значение выходной координаты объекта в результате переходного процесса будет приближенно равно z 1 .

Если это возмущение практически не вызвало сколько-нибудь заметного изменения выходной координаты объекта (рис. 2,б ), то входное инерционное звено отсутствует. Если же переходный про­цесс в результате такого возмущения имеет вид, качественно близ­кий к представленному на рис. 2, в , то инерционное звено на входе объекта существует.

Рис. 2 Характеристики экстремального ОУ

Структурой объектов НЛ и ЛН, у которых линейная часть описывается дифференциальным уравнением первого порядка с за­паздыванием или без него, а статическая характеристика y=f (x ) может быть любой непрерывной функцией с одним экстремумом в рабочем диапазоне может быть аппроксимировано достаточно большое количество промышленных объектов оптимизации.


Системы экстремального управления:

Системы автоматической оптимизации с запоминанием экстремума

В экстремальных регуляторах САО с запоминанием экстремума на сигнум-реле подается разность между те­кущим значением выходного сигнала у объекта и его значением в предыдущий момент времени.

Структурная схема САО с запоминанием экстремума представлена на рис. 3. Выходная величина объек­та О со статической характеристикой у=f (х ) подается на запоминающее устройство ЗУ экстремального регулятора.

Рис. 3 Система автоматической оптимизации с запоминанием экстремума

Запоминающее устройство такой системы долж­но фиксировать только увеличение входного сигнала, т.е. запоминание происходит только при увеличении у. На уменьшение у запоминающее устройство не реагирует. Сигнал с запоминающего устройства непрерывно пода­ется на элемент сравнения ЭС, где сравнивается с теку­щим значением сигнала у. Сигнал разности у -у макс с элемента сравнения поступает на сигнум-реле СР. Ког­да разность у -y макс достигает значения зоны нечувстви­тельности у н сигнум-реле, оно производит реверс испол­нительного механизма ИМ, который воздействует на входной сигнал х объекта. После срабатывания сигнум-реле запомненное запоминающим устройством ЗУ значение y сбрасывается и запоминание сигнала у на­чинается снова.

Системы с запоминанием экстремума обычно имеют исполнительные механизмы с постоянной скоростью пе­ремещения, т.е. dx/dt=±k 1 где k =const. В зависимо­сти от сигнала и сигнум-реле исполнительный механизм меняет направление перемещения.

Поясним работу САО с запоминанием экстремума. Допустим, что в момент t 1 (рис. 4), когда состояние объекта характеризуется значениями сигналов на входе и выходе соответственно х 1 и у 1 (точка М 1), включен в работу экстремальный регулятор. В этот момент запо­минающее устройство запоминает сигнал у 1 . Предполо­жим, что экстремальный регулятор после включения в работу начал увеличивать значение х, при этом зна­чение у уменьшается - запоминающее устройство не реагирует на это. В результате на выходе сигнум-реле по­является сигнал у -у 1 . В момент t сигнал у -у 1 достигает зоны нечувствительности сигнум-реле у н (точка М 2), которое срабатывает, производя реверс исполнительного механизма. После этого запомненное значение у 1 сбра­сывается и запоминающее устройство запоминает новое значение у 2 . Сигнал входа объекта х уменьшается, а сиг­нал выхода у возрастает (траектория от точки М 2 к М 3). Поскольку у все время увеличивается, выход ЗУ непре­рывно следует за изменением у.

Рис. 4 Поиск оптимума в САО с запоминанием экстремума:

а - характеристика объекта; б - изменение выхода объекта; в - сигнал на входе сигнум-реле; г - изменение входа объекта.

В точке М 3 система достигает экстремума, но умень­шение х продолжается. Вследствие этого после точки М 3 значение у уже уменьшается и ЗУ запоминает y макс. Теперь на входе сигнум-реле СР опять появляется сиг­нал разности у-у макс. В точке M 4 , когда y 4 -y макс =y н, сигнум-реле срабатывает, производя реверс исполнитель­ного механизма и сброс запомненного значения y макс и т.д.

Устанавливаются колебания вокруг экстремума ре­гулируемой величины. Из рис. 4 видно, что период колебаний входа Т вх объекта в 2 раза больше, чем пе­риод колебаний выхода объекта Т вых. Сигнум-реле реверсирует ИМ при y =y макс -y н. На­правление движения ИМ после срабатывания сигнум-реле зависит от направления движения ИМ до срабаты­вания сигнум-реле.

Из рассмотрения работы САО с запоминанием экс­тремума видно, что ее название не совсем точно отра­жает сущность действия системы. Запоминающее устрой­ство фиксирует не экстремум статической характеристи­ки объекта (его значение в момент включения регуля­тора в работу неизвестно). Запоминающее устройство фиксирует значения выходной величины у объекта, ког­да у увеличивается.


Системы автоматической оптимизации шагового типа

Структурная схема шаговой САО показана на рис. 5. Измерение выходного сигнала у объекта в системе происходит дискретно (за датчиком выхода объекта имеется импульсный элемент ИЭ 1), т. е. через опреде­ленные промежутки времени ∆t (∆t - период повторения импульсного элемента). Таким образом, импульсный эле­мент преобразует изменяющийся выходной сигнал у объ­екта в последовательность импульсов, высота которых пропорциональна значениям у в моменты времени t=n t, называемые моментами съема. Обозначим значения у в момент времени t=n t через у п. Значения у n подаются на запоминающее устройство ЗУ (элемент запаздывания). Запоминающее устройство подает на элемент сравнения ЭС предыдущее значение у п- 1 . На ЭС одновременно поступает y n . На выходе элемента сравнения получается сигнал разности ∆y n =y n -у п- 1 В следующий момент t =(n +1) ∆t съема сигнала запомненное значение у п- 1 сбрасывается с ЗУ и запоминается сигнал у п+ 1 , a cигнал у п поступает с ЗУ на ЭС и на входе сигнум-реле СР появляется сигнал ∆у п+ 1 = y n + 1 -y n .

Рис. 5 Структура дискретной (шаговой ) САО

Итак, на сигнум-релe в шаговой САО подаетcя сигнал, пропорциональный приращению ∆у выхода объекта за отрезок времени ∆t. Если ∆у>0 то такое движение допускается сигнум-реле; если ∆у<0, то сигнум-реле сра­батывает и изменяет направление сигнала входа х.

Между сигнум-реле СР и исполнительным механиз­мом ИМ (рис. 5) включен еще один импульсный эле­мент ИЭ 2 (работающий синхронно с ИЭ 1), который осу­ществляет периодическое размыкание цепи питания ИМ, останавливая ИМ на это время.

Исполнительный механизм в подобных САО обычно осуществляет изменение входа х объекта шагами на по­стоянное значение ∆х. Изменение входного сигнала объ­екта на шаг целесообразно производить быстро, чтобы время перемещения исполнительного механизма на один шаг было достаточно мало. При этом возмущения, вно­симые в объект исполнительным механизмом, будут при­ближаться к скачкообразным.

Таким образом, сигнум-реле изменяет направление последующего шага ∆х п+ 1 исполнительного механизма, если значение ∆у п становится меньше нуля.

Рассмотрим характер поиска экстремума в шаговой САО с безынерционным объектом. Допустим, что начальное состояние объекта характеризуется точкой M 1 на статической зависимости y=f (x ) (рис.6,а). Пред­положим, что экстремальный регулятор включается в работу в момент времени t 1 и исполнительный меха­низм делает шаг ∆х на увеличение сигнала входа объекта.

Рис. 6 Поиск в дискретной САО : а - характеристика объекта; б - изменение выхода; в - изменение входа

Сигнал на выходе объекта у при этом также увели­чивается. Через время ∆t (в момент времени t 2) испол­нительный механизм производит шаг в ту же сторону, так как ∆у 1 2 -y 1 >0. В момент t 3 исполнительный механизм производит еще один шаг на ∆х в ту же сто­рону, так как ∆y 2 =y 3 -y 2 больше нуля, и т. д. В момент времени t 5 приращение выходного сигнала объекта ∆y 3 =y 5 -y 4 , станет меньше нуля, сигнум-реле срабатывает и следующий шаг ∆х исполнительный механизм сделает в сторону уменьшения сигнала входа объекта х и т. д.

В шаговых САО для обеспечения устойчивости необходимо, чтобы движение системы к экстремуму было немонотонным.

Существуют шаговые САО, у которых изменение сиг­нала на входе за один шаг ∆х переменно и зависит от значения y .

Системы автоматической оптимизации с управлением по производной

Системы автоматической оптимизации с управлением по производной используют то свойство экстремальной статической характеристики, что производная dy/dx рав­на нулю при значении входного сигнала объекта х=х опт (см. рис. 7).

Рис. 7 График измене­ния производной унимо­дальной характеристики

Структурная схема одной из таких САО приведена на рис. 8. Значения входного и выходного сигналов объ­екта О подаются на два дифференциатора Д 1 и Д 2 , на выходе которых получаются сигналы соответственно dx/dt и dy/dt. Сигналы производных поступают на делительное устройство ДУ.

Рис. 8 Структура САО с измерением про­изводной статической ха­рактеристики

На выходе ДУ получается сиг­нал dy/dx, который подается на усилитель У с коэффи­циентом усиления k 2 . Сигнал с выхода усилителя посту­пает на исполнительный механизм ИМ с переменной скоростью перемещения, значение которой пропорцио­нально выходному сигналу усилителя и. Коэффициент усиления ИМ равен k 1 .

Если статическая характеристика объекта y=f (x ) имеет форму параболы y=-kx 2 , то САО описывается линейными уравнениями (при отсутствии возмущений), так как dy/dx= -2kx, а остальные звенья системы ли­нейны. Логическое устройство для определения направ­ления движения к экстремуму в такой системе не при­меняется, так как она чисто линейна и в ней, казалось бы, заранее известно значение экстремума (поскольку dy/dx= 0 при x=x oiit).

В момент включения САО в работу на ИМ подается некоторый сигнал для приведения его в движение, в противном случае dx/dt= 0 и dy/dt= 0 (при отсутствии случайных возмущений). После этого САО работает, как обычная САР, у которой заданием является величи­на dy/dx= 0.

Описанная система обладает рядом недостатков, ко­торые делают ее практически малоприменимой. Во-пер­вых, при dx/dt→ 0 производная dy/dt также стремится к нулю - задача отыскания экстремума становится не­определенной. Во-вторых, реальные объекты обладают за­паздыванием, поэтому необходимо делить друг на друга не одновременно замеренные производные dy/dt и dx/dt, а сдвинутые по времени в точности на время задержки сигнала в объекте, что выполнить достаточно сложно. В-третьих, отсутствие в такой САО логического устройства (сигнум-реле) приводит к тому, что в некото­рых условиях система теряет работоспособность. Допу­стим, что САО включилась в работу при x(см. рис. 7) и исполнительный механизм ИМ (рис. 8) начал увеличивать сигнал на входе объекта х. Скорость исполнительного механизма пропорциональна сигналу производной dy/dx, т. е. dx/dt=k 1 dy/dx. Поэтому САО будет асимптотически приближаться к экстремуму. Но предположим, что при включении регулятора ИМ на­чал бы уменьшать входной сигнал объекта (dx/dt< 0). При этом у также уменьшается (dy/dt< 0) и dy/dx бу­дет больше нуля. Тогда в соответствии с выражением для производной dx/dt=k 1 dy/dx (где k 1 > 0) скорость из­менения сигнала на входе dx/dt должна стать положи­тельной. Но из-за отсутствия логического (реверсирую­щего) устройства реверс ИМ в такой САО произойти не может и задача отыскания экстремума опять-таки ста­новится неопределенной.

Кроме того, даже если такая система в начальный момент движется к экстремуму, то она теряет работо­способность при сколь угодно малом дрейфе статической характеристики без коммутатора поверочных реверсов.

Рис. 9 Система оптимизации с измерением производной выхода объекта:

а - структура системы; б - характеристика объекта; в - изменение выхода; г - сигнал на входе, д - изменение вхо­да объекта.

Рассмотрим другой тип САО с измерением производ­ной и исполнительным механизмом ИМ постоянной ско­рости перемещения, структурная схема которой пред­ставлена на рис. 9.

Рассмотрим характер поиска экстремума САО с изме­рением производной со структурной схемой, показанной на рис. 9,а .

Пусть безынерционный объект регулирования О (рис. 9,а) имеет статическую характеристику, пока­занную на рис. 9,б . Состояние САО в момент вклю­чения экстремального регулятора определяется значения­ми сигналов входа x 1 и выхода у 1 - точка М 1 на стати­ческой характеристике.

Предположим, что экстремальный регулятор после включения его в работу в момент времени t 1 изменяет сигнал на входе х в сторону увеличения. При этом сиг­нал на выходе объекта у будет изменяться в соответст­вии со статической характеристикой (рис. 9,в ), а про­изводная dy/dt при движении от точки М 1 до М 2 умень­шается (рис. 9,г ). В момент времени t 2 выход объек­та достигнет экстремума у макс, а производная dy/dt будет равна нулю. За счет нечувствительности сигнум-реле система будет продолжать движение, удаляясь от экстремума. При этом производная dy/dt изменит знак и станет отрицательной. В момент t 3 , когда значение dy/dt, оставаясь отрицательным, превысит зону нечув­ствительности сигнум-реле (dy/dt ) H , произойдет реверс исполнительного механизма и входной сигнал х начнет уменьшаться. Выход объекта начнет снова приближать­ся к экстремуму, а производная dy/dt станет положи­тельной при движении от точки М 3 до М 4 (рис. 9,в ). В момент времени t 4 сигнал на выходе снова достигает экстремума, а производная dy/dt=0.

Однако за счет нечувствительности сигнум-реле дви­жение системы будет продолжаться, производная dy/dt станет отрицательной и в точке М 5 снова произойдет ре­верс и т.д.

В этой системе дифференцируется только выходной сигнал объекта, который подается на сигнум-реле СР. Поскольку при переходе системы через экстремум знак dy/dt изменяется, то для отыскания экстремума нужно реверсировать ИМ, когда производная dy/dt станет отрицательной и превысит зону нечувствительности (dy/dt ) H сигнум-реле.

Система, реагирующая на знак dy/dt, по принципу действия близка к шаговой САО, но менее помехоустой­чива.

Системы автоматической оптимизации с вспомогательной модуляцией

В некоторых работах такие системы автоматической оптимизации называются системами с непрерывным по­исковым сигналом или по терминологии А.А. Красовского просто непрерывными системами экстремаль­ного регулирования.

В этих системах используется свойство статической характеристики изменять фазу колебаний выходного сиг­нала объекта по сравнению с фазой входных колебаний объекта на 180° при переходе выходного сигнала объек­та через экстремум (см. рис. 10).

Рис. 10 Характер прохожде­ния гармонических колебаний через унимодальную характе­ристику

В отличие от рассмотренных выше САО системы с вспомогательной модуляцией имеют раздельные поис­ковые и рабочие движения.

Структурная схема САО с вспомогательной модуля­цией представлена на рис. 11. Входной сиг­нал х объекта О с характеристикой y=f (x ) представляет собой сумму двух составляющих: x=x o (t )+a sinω 0 t , где а и ω 0 - постоянные величины. Составляющая a sinω 0 t является пробным движением и вырабатывается генера­тором Г, составляющая x o (t ) является рабочим движением. При движении к экстремуму переменная составляющая a sinω 0 t входного сигнала объекта вызывает по­явление переменной составляющей той же частоты ω 0 =2π/Т 0 в выходном сигнале объекта (см. рис. 10). Переменная составляющая может быть найдена графи­чески, как это показано на рис. 10.

Рис. 11 Структура САО с вспомогатель­ной модуляцией

Очевидно, что переменная составляющая сигнала на выходе объекта совпадает по фазе с переменной состав­ляющей сигнала на входе для любого значения входа, когда x 0 =x 1 Следовательно, если колебания сигналов входа и выхода совпадают по фазе, то для дви­жения к экстремуму необходимо увеличивать х 0 (dx 0 /dt должна быть положительной). Если х 0 =x 2 >x опт, то фаза выходных колебаний будет сдвинута на 180° по отношению к входным колебаниям (см. рис. 10). При этом для движения к экстремуму необходимо, чтобы dx 0 /dt была отрицательной. Если x 0 =x опт, то на выходе объекта появляются колебания двойной частоты 2ω 0 , а колебания частоты ω 0 отсутствуют (если статическая характеристика вблизи экстремума отличается от пара­болы, то на выходе объекта могут появиться колебания с частотой больше 2 ω 0).

Амплитуда а поисковых колебаний должна быть не­велика, так как эти колебания проходят в выходной сиг­нал объекта и приводят к погрешности в определении экстремума.

Составляющая величины у, имеющая частоту ω 0 , вы­деляется полосовым фильтром Ф 1 (рис. 11). Задача фильтра Ф 1 состоит в том, чтобы не пропускать посто­янную или медленно меняющуюся составляющую и со­ставляющие второй и высших гармоник. В идеальном случае фильтр должен пропускать только составляющую с частотой ω 0.

После фильтра Ф 1 переменная составляющая величи­ны у, имеющая частоту ω 0 , подается на множительное звено МЗ (синхронный детектор). На вход множитель­ного звена подается также опорная величина v 1 =a sin (ω 0 t + φ ). Фаза φ опорного напряжения v 1 подби­рается в зависимости от фазы выхода фильтра Ф 1 , по­скольку фильтр Ф 1 вносит дополнительный сдвиг фазы.

Напряжение на выходе множительного звена u=vv 1 . При значении x <x опт

u = vv 1 = b sin (ω 0 t + φ ) a sin (ω 0 t + φ ) = аb sin 2 (ω 0 t + φ ) = = ab/ 2 .

При значении сигнала на входе x >х 0ПТ значение сиг­нала на выходе множительного звена МЗ составляет:

и = vv 1 = b sin (ω 0 t + φ + 180°) a sin (ω 0 t + φ ) = - ab sin 2 (ω 0 t + φ ) = = - ab/ 2 .

Рис. 12 Характер по­иска в САО с вспомога­тельной модуляцией:

а - характеристика объек­та; б -изменение фазы ко­лебаний; в - гармонические колебания на входе; г - суммарный сигнал на входе; д - сигнал на выходе мно­жительного звена.

После множительного звена сигнал и подается на низкочастотный фильтр Ф 2 , который не пропускает пе­ременную составляющую сигнала и. Постоянная состав­ляющая сигнала и=и 1 после фильтра Ф 2 подается на релейный элемент РЭ. Релейный элемент управляет исполнительным механизмом с постоянной скоростью пе­ремещения. Вместо релейного элемента в схеме может быть фазочувствительный усилитель; тогда исполнитель­ный механизм будет иметь переменную скорость пере­мещения.

На рис. 12 показан характер поиска экстремума в САО с вспомогательной модуляцией, структурная схе­ма которой приведена на рис. 11. Предположим, что начальное состояние системы характеризуется сигналами на входе и выходе объекта соответственно х 1 и y 1 (точка M 1 на рис. 12,а).

Поскольку в точке М 1 значение x 1 <х опт то при вклю­чении экстремального регулятора фазы входных и вы­ходных колебаний будут совпадать. Допустим, что при этом постоянная составляющая на выходе фильтра Ф 2 положительна (аb /2>0), что соответствует движению с возрастанием х, т. е. dx 0 /dt>0. При этом САО будет двигаться к экстремуму.

Если начальная точка М 2 , характеризующая поло­жение системы в момент включения экстремального ре­гулятора, такова, что сигнал входа объекта x >x опт (рис. 12,а), то колебания сигналов входа и выхода объекта находятся в противофазе. Вследствие этого по­стоянная составляющая на выходе Ф 2 будет отрицатель­на (ab /2<0), что вызовет движение системы в сторону уменьшения х (dx 0 /dt<0 ). В этом случае САО будет приближаться к экстремуму.

Таким образом, независимо от начального состояния системы будет обеспечен поиск экстремума.

В системах с исполнительным механизмом перемен­ной скорости скорость движения системы к экстремуму будет зависеть от амплитуды выходных колебаний объ­екта, а эта амплитуда определяется отклонением сигна­ла входа х от значения х опт

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Экстремальные системы управления

Экстремальные СУ - это такие САУ, в которых один из показателей качества работы нужно удерживать на предельном уровне (min или max).

Классическим примером экстремальной СУ является система автоподстройки частоты радиоприёмника.

Рис.1.1 - Амплитудно-частотная характеристика:

1.1 Постановка задачи синтеза экстремальных систем

Объекты описываются уравнениями:

Экстремальная характеристика дрейфует во времени.

Необходимо подобрать такое управляющее воздействие, которое позволяло бы автоматически находить экстремум и удерживать систему в этой точке.

U: extr Y=Y o (1.2)

Рис.1.2 - Статическая экстремальная характеристика:

Необходимо определить такое управляющее воздействие, которое обеспечило выполнение свойства:

1.2 Условие экстремума

Необходимое условие экстремума - равенство нулю первых частных производных.

Достаточное условие экстремума - равенство нулю вторых частных производных. При синтезе экстремальной системы необходимо оценить градиент, но вектор вторых частных производных оценить невозможно, и на практике, вместо достаточного условия экстремума используют соотношение:

Этапы синтеза экстремальной системы:

Оценка градиента.

Организация движения в соответствии с условием движение к экстремуму.

Стабилизация системы в точке экстремума.

Рис.1.3 - Функциональная схема экстремальной системы:

1.3 - Виды экстремальных характеристик

1) Унимодальная экстремальная характеристика типа модуля

Рис. 1.4 - Экстремальная характеристика типа модуля:

2) Экстремальная характеристика типа параболы

Рис. 1.5 - Экстремальная характеристика типа параболы:

3) В общем случае экстремальную характеристику можно описать параболой n-го порядка:

Y = k 1 |y-y o (t)| n + k 2 |y-y o (t)| n -1 + …+k n | y-y o (t)| + k n +1 (t).(1.9)

4) Векторно-матричное представление:

Y = y T By(1.10)

1.4 Способы оценки градиента

1.4.1 Способ деления производных

Рассмотрим его на унимодальной характеристике, y - выход динамический части системы.

yR 1 , Y = Y(y,t)

Найдём полную производную по времени:

При медленном дрейфе, таким образом

Достоинство: простота.

Недостаток: при малых 0 нельзя определить градиент.

Дифференцирующий фильтр.

Рис. 1.6 - Схема оценки частной производной:

1.4.2 Дискретная оценка градиента

Рис. 1.7 - Схема дискретной оценки частной производной:

1.4.3 Дискретная оценка знака градиента

При малом шаге дискретизации заменяем:

1.4.4 Метод синхронного детектирования

Метод синхронного детектирования предполагает добавление ко входному сигналу на экстремальный объект дополнительного синусоидального сигнала малой амплитуды, высокой частоты и выделение из выходного сигнала соответствующей составляющей. По соотношению фаз этих двух сигналов можно сделать вывод о знаке частных производных.

Рис. 1.8 - Функциональная схема оценки частной производной:

Рис. 1.9 - Иллюстрация прохождения поисковых колебаний на выход системы:

y 1 - рабочая точка, при этом разность фаз сигналов равна 0.

y 2 - разность фаз сигналов, в качестве простейшего ФЧУ можно использовать блок перемножения.

Рис. 1.10 - Иллюстрация работы ФЧУ:

В качестве фильтра выбирают усредняющий на периоде фильтр, который позволяет получить на выходе сигнал, пропорциональный значению частной производной.

Рис. 1.11 - Линеаризация статической характеристики в рабочей точке:

Следовательно уравнение экстремальной кривой можно заменить уравнением прямой:

Сигнал на выходе ФЧУ:

k - коэффициент пропорциональности - тангенс угла наклона прямой.

Сигнал на выходе фильтра:

Таким образом:

Метод синхронного детектирования годится для определения не только одной частной производной, но и градиента в целом, при этом на вход подаётся несколько колебаний различной частоты. Соответствующие фильтры на выходе выделяют реакцию на конкретный поисковый сигнал.

1.4.5 Специальный фильтр оценки градиента

Этот метод предполагает введение в систему специальную динамическую систему, промежуточный сигнал которой равен частной производной.

Рис. 1.12 - Схема специального фильтра оценки частной производной:

T- постоянная времени фильтра:

Для оценки полной производной Y используют ДФ - дифференцирующий фильтр, а затем эта оценка полной производной применяется для оценки градиента.

1.5 Организация движения к экстремуму

1.5.1 Системы первого порядка

Организуем закон управления пропорционально градиенту:

Запишем уравнение замкнутой системы:

Это обычное дифференциальное уравнение, которое можно исследовать методами ТАУ.

Рассмотрим уравнение статики системы:

Если с помощью коэффициента усиления k обеспечить устойчивость замкнутой системы, то автоматически в статике мы придём в точку экстремума.

В некоторых случаях с помощью коэффициента k можно кроме устойчивости обеспечить определённую длительность переходного процесса в замкнутой системе, т.е. обеспечить заданное время выхода на экстремум.

Где k - устойчивость

Рис. 1.13 - Функциональная схема градиентной экстремальной системы первого порядка:

Этот способ годится только для унимодальных систем, т.е. систем с одним глобальным экстремумом.

1.5.2 Метод тяжёлого шарика

По аналогии с шариком, который скатывается в овраг и проскакивает точки локальных экстремумов, система АУ с колебательными процессами также проскакивает локальные экстремумы. Для обеспечения колебательных процессов в систему первого порядка вводим дополнительную инерционность.

Рис. 1.14 - Иллюстрация метода “тяжёлого” шарика:

Уравнение замкнутой системы;

Характеристическое уравнение системы:

Чем меньше d тем длиннее переходный процесс.

Анализируя экстремальную характеристику, задаются необходимые перерегулирование и длительность переходного процесса, откуда задаются:

1.5.3 Одноканальные системы общего вида

Закон управления:

Подставив закон управления в управление объекта, получим уравнение замкнутой системы:

В общем случае, для анализа устойчивости замкнутой системы необходимо использовать второй метод Ляпунова, с помощью которого определяется коэффициент усиления регулятора. Т.к. 2 й метод Ляпунова даёт лишь достаточное условие устойчивости, то выбранная функция Ляпунова может оказаться неудачной и регулярную процедуру расчёта регулятора здесь предложить нельзя.

1.5.4 Системы со старшей производной в управлении

Общий случай экстремума объектов:

Функции f, B и g должны удовлетворять условиям существования и единственности решения дифференциального уравнения. Функция g - должна быть многократно дифференцируемой.

С - матрица производных

Задача синтеза разрешима, если матрица произведений будет не вырожденная, т.е.

Анализ условия разрешимости задачи синтеза позволяет определить производную выходных переменных, которая явно зависит от управляющего воздействия.

Если выполняется условие (1.31), то такой производной является первая производная, а следовательно требования к поведению замкнутой системы можно формировать в виде дифференциального уравнения для y, соответствующего порядка.

Сформируем закон управления замкнутой системы, для чего сформируем закон управления, подставив в правую часть управления для:

Уравнение замкнутой системы относительно выходной переменной.

Рассмотрим ситуацию, когда

При соответствующем выборе коэффициента усиления мы получаем желаемое уравнение и автоматический выход на экстремум.

Параметры регулятора выбираются из тех соображений, что и для обычных САУ, т.е. (СВК) i = (20*100), что позволяет обеспечить соответствующую ошибку.

Рис. 1.15 - Схема системы со старшей производной в управлении:

В системе для оценки полной производной по времени в систему вводят дифференцирующий фильтр, поэтому для оценки градиентов в таких системах удобно использовать фильтр оценки градиента. Т.к. оба этих фильтра имеют малые постоянные времени, то в системе могут возникать разнотемповые процессы, выделить которые можно с помощью метода разделения движений, причём медленные движения будут описываться уравнением (1.34), которое соответствует желаемому при. Быстрые движения нужно анализировать на устойчивость, причём в зависимости от соотношения постоянной времени ДФ и фильтра оценки частных производных (ФОЧП), можно выделить следующие виды движений:

1) Постоянные времени этих фильтров соизмеримы.

Быстрые движения описывают комбинированные процессы в этих двух фильтрах.

2) Постоянные времени различаются на порядок.

В системе наблюдаются кроме медленных движений, быстрые и сверх- быстрые движения, соответствующие наименьшей постоянной времени.

На устойчивость необходимо анализировать оба случая.

2. Оптимальные системы

Оптимальные системы - это системы, в которых заданное качество работы достигается за счет максимального использования возможностей объекта, иными словами это системы, в которых объект работает на пределе своих возможностей. Рассмотрим апериодическое звено первого порядка.

Для которого необходимо обеспечить минимальное время перехода у из начального состояния y(0) в конечное y k . Переходная функция такой системы при K=1 выглядит следующим образом

Рис. 2.1 - Переходная функция системы при U= const:

Рассмотрим ситуацию, когда на вход объекта подаем максимально возможное управляющее воздействие.

Рис. 2.2 - Переходная функция системы при U=A= const:

t 1 - минимально возможное время перехода y из нулевого состояния в конечное для данного объекта.

Для получения такого перехода существует два закона управления:

Второй закон более предпочтителен и позволяет обеспечить управление при помехах.

Рис. 2.3 - Структурная схема системы с законом управления типа обратной связи:

2.2 Постановка задачи синтеза оптимальных систем

2.2.1 Математическая модель объекта

Объект описан переменными состояния

Где функция f(x,u) непрерывна, дифференцируема по всем аргументам и удовлетворяет условию существования и единственности решения дифференциального уравнения.

Эта функция является нелинейной, но стационарной. В качестве частных случаев объект может иметь вид нелинейной системы с аддитивным управлением:

Либо линейной системой

Объект должен быть представлен в одной из трех форм, представленных выше.

2.2.2 Множество начальных и конечных состояний

Задача оптимального перехода из начального состояния в конечное представляет собой краевую задачу

Где начальные и конечные точки могут быть заданы одним из четырех способов, представленных на рис. 2.4.

а) задача с фиксированными концами,

б) задача с фиксированным первым концом (фиксированная начальная точка и множество конечных значений),

в) задача с фиксированным правым концом,

г) задача с подвижными концами.

Рис.2.4 - Фазовые портреты перехода системы из начального состояния в конечное для различных задач:

Для объекта множество начальных состояний может в общем случае совпадать с о всем множеством состояний либо с рабочей областью, а множество конечных состояний является подпространством множества состояний или рабочей области.

Пример 2.1 - В любую ли точку пространства состояний можно перевести объект, описываемый системой уравнений?

Подставив во второе уравнение значение U из первого уравнения u = x 2 0 - 2x 1 0 , получим -5x 1 0 + x 2 0 = 0;

Получили множество конечных состояний, описываемое уравнением x 2 0 = 5x 1 0 ;

Таким образом, множество конечных состояний, задаваемое для объекта (системы), должно быть реализуемым.

2.2.3 Ограничения на состояния и управление

Рис. 2.5 - Общий вид рабочей области пространства состояний:

Выделяется рабочая область пространства состояний, которая оговаривается. Как правило, эта область описывается ее границами с помощью модульных соглашений.

Рис.2.6 - Вид рабочей области пространства состояний, заданной модульными соглашениями:

Также задается U - область допустимых значений управляющего воздействия. На практике область U задается также с помощью модульных соотношений.

Задача синтеза оптимального регулятора решается при условии ограничений на управление и ограниченном ресурсе.

2.2.4 Критерий оптимальности

На этом этапе оговариваются требования, предъявляемые к качеству работы замкнутой системы. Требования задаются в обобщенном виде, а именно в виде интегрального функционала, который носит название критерия оптимальности.

Общий вид критерия оптимальности:

Частные виды критерия оптимальности:

1) критерий оптимальности, обеспечивающий минимум времени переходного процесса (решается задача оптимального быстродействия):

2) критерий оптимальности, обеспечивающий минимум затрат энергии:

По одной из компонент:

По всем переменным состояниям:

По одному управляющему воздействию:

По всем управляющим воздействиям:

По всем компонентам (в самом общем случае):

2.2.5 Форма результата

Необходимо оговорить в каком виде будем искать управляющее воздействие.

Возможны два варианта оптимального управления: u 0 = u 0 (t), используется при отсутствии возмущения, u 0 = u 0 (x), оптимальное управление в виде обратной связи (замкнутое управление).

Формулировка задачи синтеза оптимальной системы в общем виде:

Для объекта, описанного переменными состояниями с заданными ограничениями и множеством начальных и конечных состояний, необходимо найти управляющее воздействие, обеспечивающее качество процессов в замкнутой системе, соответствующее критерию оптимальности.

2.3 Метод динамического программирования

2.3.1 Принцип оптимальности

Исходные данные:

Необходимо найти u 0:

Рис. 2.7 - Фазовый портрет перехода системы из начальной точки в конечную в пространстве состояний:

Траектория перехода из начальной точки в конечную будет оптимальной и единственной.

Формулировка принципа: Конечный участок оптимальной траектории есть также оптимальная траектория. Если бы переход из промежуточной точки в конечную не осуществлялся бы по оптимальной траектории, то для него можно было бы найти свою оптимальную траекторию. Но в этом случае переход из начальной точки в конечную проходил бы по другой траектории, которая должна была бы быть оптимальной, а это невозможно, так как оптимальная траектория единственная.

2.3.2 Основное уравнение Беллмана

Рассмотрим объект управления произвольного вида:

Рассмотрим переход в пространстве состояний:

Рис. 2.8 - Фазовый портрет перехода системы из начальной точки в конечную x(t) - текущая (начальная) точка, x(t+Дt) - промежуточная точка.

Преобразуем выражение:

Заменим второй интеграл на V(x(t+Дt)):

При малом значении Дt введем допущения:

2) Разложим вспомогательную функцию

Выполняя дальнейшие преобразования, получим:

Где min V(x(t)) и есть критерий оптимальности J.

В результате получили:

Разделим обе части выражения на Дt и устраним Дt к нулю:

Получим основное уравнение Беллмана:

2.2.3 Расчетные соотношения метода динамического программирования:

Основное уравнение Белмана содержит (m+1) - неизвестных величин, т.к. U 0 R m , VR 1:

Продифференцировав m раз, получим систему из (m+1) уравнений.

Для ограниченного круга объектов решение полученной системы уравнений дает точное оптимальное управление. Такая задача носит название задачи АКОР (аналитического конструирования оптимальных регуляторов).

Объекты, для которых рассматривается задача АКОР, должны удовлетворять следующим требованиям:

Критерий оптимальности должен быть квадратичным:

Пример 2.2

Для объекта, описываемого уравнением:

Необходимо обеспечить переход из x(0) в x(T) по критерию оптимальности:

Проанализировав объект на устойчивость, получим:

U 0 = U 2 = -6x.

2.4 Принцип максимума Понтрягина

Введем расширенный вектор состояний, который расширяем за счет нулевой компоненты, в качестве которой выбираем критерий оптимальности. zR n+1

Также введем расширенный вектор правых частей, который расширяем за счет функции, стоящей под интегралом в критерии оптимальности.

Введем Ш - вектор сопряженных координат:

Сформируем Гамильтониан, представляющий собой скалярное произведение Ш и ц(z,u):

H(Ш,z,u) = Ш*ц(z,u),(2.33)

Уравнение (2.34) называется основным уравнением принципа максимума Понтрягина, основанное на уравнении динамического программирования. Оптимальным является управление, которое на заданном интервале времени доставляет максимум Гамильтониана. Если бы ресурс управления не был бы ограничен, то для определения оптимального управления можно было бы воспользоваться необходимыми и достаточными условиями экстремума. В реальной ситуации для отыскания оптимального управления необходимо анализировать величину Гамильтониана при предельном значении уровня. В этом случае U 0 будет функцией расширенного вектора состояний и вектора сопряженных координат u 0 = u 0 .

Для отыскания сопряженных координат необходимо решить систему уравнений:

2.4.1 Процедура расчета системы по принципу максимума Понтрягина.

Уравнения объекта должны быть приведены к виду, стандартному для синтеза оптимальных систем:

Необходимо оговорить также начальные и конечные состояния и записать критерий оптимальности.

Вводятся расширенный вектор состояний

Расширенный вектор правых частей:

И вектор сопряженных координат:

Записываем Гамильтониан как скалярное произведение:

Находим максимум Гамильтониана по u:

По которому определяем оптимальное управление u 0 (Ш,z).

Записываем дифференциальные уравнения для вектора сопряженных координат:

Находим сопряженные координаты как функцию времени:

6. Определяем окончательный оптимальный закон управления:

Как правило, этот способ позволяет получить программный закон управления.

Пример 2.3 - Для объекта, представленного на рис. 2. 9. необходимо обеспечить переход из начальной точки y(t) в конечную y(t) за T= 1c с качеством процесса:

Рис. 2.9 - Модель объекта:

Для определения констант b 1 и b 2 нужно решить краевую задачу.

Запишем уравнение замкнутой системы

Проинтегрируем:

Рассмотрим конечную точку t=T=1с., как x 1 (T)=1 и x 2 (T)=0:

1= 1/6 b 1 + 1/2 b 2

Получили систему уравнений, из которой находим b 2 = 6, b 1 = -12.

Запишем закон управления u 0 = -12t + 6.

2.4.2 Задача оптимального управления

Для объекта общего вида необходимо обеспечить переход из начальной точки в конечную за минимальное время при ограниченном законе управления.

Особенности задачи оптимального быстродействия

Гамильтониан быстродействия:

Релейность управления:

Эта особенность имеет место для релейных объектов.

Теорема о числе переключений управляющего воздействия:

Эта теорема справедлива для линейных моделей с вещественными корнями характеристического уравнения.

Det (pI - A) =0 (2.51)

Л(A) - вектор вещественных собственных чисел.

Формулировка теоремы:

В задаче оптимального быстродействия с вещественными корнями характеристического уравнения число переключений не может быть больше, чем (n-1), где n - порядок объекта, следовательно, число интервалов постоянства управления не будет больше, чем (n-1).

Рис. 2.10 - Вид управляющего воздействия при n=3:

Пример 2.4 - Рассмотрим пример решения задачи оптимального быстродействия:

Ш=[Ш 1 , Ш 2 ]

H б = Ш 1 x 2 + Ш 2 (-2dx 2 -x 1 +u)

При - корни вещественные:

Сумма двух экспонент представляет собой:

Если, то корни комплексно-сопряженные и решение будет представлять собой периодическую функцию. В реальной системе, переключений не более 5 - 6.

2.4.3 Метод поверхности переключений

Данный метод позволяет найти управление функций переменной состояния для случая когда оптимальное управление носит релейный характер. Таким образом этот метод можно применять при решении задач оптимального быстродействия, для объекта с аддитивным управлением

Суть метода заключается в том, чтобы во всём пространстве состояний выделить точки, где происходит смена знака управления и объединить их в общую поверхность переключений.

Поверхность переключений

Закон управления будет иметь следующий вид:

Для формирования поверхности переключений удобнее рассматривать переход из произвольной начальной точки в начало координат

Если конечная точка не совпадает с началом координат, то необходимо выбрать новые переменные, для которых это условие будет справедливо.

Имеем объект вида

Рассматриваем переход, с критерием оптимальности:

Этот критерий позволяет найти закон управления такого вида:

С неизвестным, начальные условия нам также неизвестны.

Рассматриваем переход:

Метод обратного времени (метод попятного движения).

Этот метод позволяет определить поверхности переключений.

Суть метода заключается в том, что начальная и конечная точки меняются местами, при этом вместо двух совокупностей начальных условий остаётся одна для.

Каждая из этих траекторий будет оптимальна. Сначала находим точки, где управление меняет знак и объединяем их в поверхность, а затем направление движения меняем на противоположное.

Пример - Передаточная функция объекта имеет вид:

Критерий оптимальности быстродействия:

Ограничение на управление.

Рассмотрим переход:

Оптимальное управление будет иметь релейный характер:

Перейдём в обратное время (т.е.). В обратном времени задача будет иметь такой вид

Рассмотрим два случая:

Получим уравнения замкнутой системы:

Воспользуемся методом непосредственного интегрирования, получим зависимость от и поскольку -, то имеем

Т.к. начальные и конечные точки поменяли местами, то, получим аналогично:

Построим получившееся и по методу фазовой плоскости определим направление

Применив метод непосредственного интегрирования, получим:

Функция будет иметь вид:

Изменив направление:

Точка смены знака (точка переключения).

Общее аналитическое выражение:

Уравнение поверхности:

Оптимальный закон управления:

Подставив уравнение поверхности, получим:

2.5 Субоптимальные системы

Субоптимальные системы - это системы близкие по свойствам к оптимальным

Характеризуется критерием оптимальности.

Абсолютная погрешность.

Относительная погрешность.

Субоптимальным называют процесс близкий к оптимальному с заданной точностью.

Субоптимальная система - система где есть хоть один субоптимальный процесс.

Субоптимальные системы получаются в следующих случаях:

при аппроксимации поверхности переключений (с помощью кусочно-линейной аппроксимации, аппроксимация с помощью сплайнов)

При в субоптимальной системе будет возникать оптимальный процесс.

ограничение рабочей области пространства состояний;

3. АДАПТИВНЫЕ СИСТЕМЫ

3.1 Основные понятия

Адаптивными системами называют такие системы, в которых параметры регулятора меняются вслед за изменением параметров объекта, таким образом, чтобы поведение системы в целом оставалось неизменным и соответствовало желаемому:

Существует два направления в теории адаптивных систем:

адаптивные системы с эталонной моделью (АСЭМ);

адаптивные системы с идентификатором (АСИ).

3.2 Адаптивные системы с идентификатором

Идентификатор - устройство оценки параметров объекта (оценка параметров должна осуществляться в реальном времени).

АР - адаптивный регулятор

ОУ - объект управления

U - идентификатор

Часть, которая выделена пунктиром, может быть реализована в цифровом виде:

V, U, X - могут быть векторы. Объект может быть многоканальным.

Рассмотрим работу системы.

В случае неизменных параметров объекта, структура и параметры адаптивного регулятора не меняются, действует главная обратная связь, сис-тема представляет собой систему стабилизации.

Если параметры объекта меняются, то они оцениваются идентификато-ром в реальном времени и происходит изменение структуры и параметров адаптивного регулятора так, чтобы поведение системы оставалось неизмен-ным. Основные требования предъявляются к идентификатору (быстродействие и т.д.) и к самому алгоритму идентификации. Такой класс систем используют для управления объектами с медленными нестационарностями. Если мы имеем нестационарный объект общего вида:

;.Простейший адаптивный вид будет следующий:

Требования, которые предъявляются к системе:

Где и - матрицы постоянных коэффициентов.

Реально мы имеем:

Если приравнять, то получим соотношение для определения параметров регулятора

3.3 Адаптивные системы с эталонной моделью

В таких системах существует эталонная модель (ЭМ), которая ставится параллельно объекту. БА - блок адаптации.

Рис 2 - Функциональная схема АСЭМ:

Рассмотрим работу системы:

В том случае, когда параметры объекта не меняются или процессы на выходе соответствуют эталонным, ошибка:

автоподстройка управление программирование

Не работает блок адаптации и не перестраивается адаптивный регулятор, в системе действует плавная обратная связь.

Если поведение отлично от эталонного, это происходит при изменении параметров объекта, в этом случае появляется ошибка.

Включается блок адаптации, перестраивается структура адаптивного регулятора, таким образом чтобы свести к эталонной модели объекта.

Блок адаптации должен сводить ошибку к нулю ().

Алгоритм, закладываемый в блок адаптации, формируется различными способами, например, с использованием второго метода Ляпунова:

Если это будет выполняться, то система будет асимптотически устойчива и.

Размещено на Allbest.ru

...

Подобные документы

    Постановка задачи синтеза системы управления. Применение принципа Максимума Понтрягина. Метод аналитического конструирования оптимальных регуляторов. Метод динамического программирования Беллмана. Генетическое программирование и грамматическая эволюция.

    дипломная работа , добавлен 17.09.2013

    Методы решения задачи синтеза системы управления динамическим объектом. Сравнительная характеристика параметрического и структурно-параметрического синтеза. Схема процесса символьной регрессии. Принцип действия метода аналитического программирования.

    дипломная работа , добавлен 23.09.2013

    Понятие большой системы управления. Модель структурного сопряжения элементов. Организация многоуровневой структуры управления. Общая задача линейного программирования. Элементы динамического программирования. Постановка задачи структурного синтеза.

    учебное пособие , добавлен 24.06.2009

    Постановка задачи динамического программирования. Поведение динамической системы как функция начального состояния. Математическая формулировка задачи оптимального управления. Метод динамического программирования. Дискретная форма вариационной задачи.

    реферат , добавлен 29.09.2008

    Исследование основных динамических характеристик предприятия по заданному каналу управления, результаты которого достаточны для синтеза управляющей системы (СУ). Построение математической модели объекта управления. Анализ частотных характеристик СУ.

    курсовая работа , добавлен 14.07.2012

    Теория автоматического управления. Передаточная функция системы по ее структурной схеме. Структурная схема и передаточная функция непрерывной САР. Устойчивость системы. Исследование переходного процесса. Расчет и построение частотных характеристик.

    курсовая работа , добавлен 14.03.2009

    Общие понятия и классификация локальных систем управления. Математические модели объекта управления ЛСУ. Методы линеаризации нелинейных уравнений объектов управления. Порядок синтеза ЛСУ. Переходные процессы с помощью импульсных переходных функций.

    курс лекций , добавлен 09.03.2012

    Принцип работы и задачи информационных систем управления проектами. Методы критического пути, анализа и оценки планов. Сетевые модель и график, виды путей. Информационный обмен между предприятиями, классификация информационных систем и их рынки сбыта.

    контрольная работа , добавлен 18.11.2009

    Классификация информации по разным признакам. Этапы развития информационных систем. Информационные технологии и системы управления. Уровни процесса управления. Методы структурного проектирования. Методология функционального моделирования IDEF0.

    курсовая работа , добавлен 20.04.2011

    Анализ основных этапов решения задачи синтеза регуляторов в классе линейных стационарных систем. Нахождение оптимальных настроек регулятора и передаточной функции замкнутой системы. Изучение состава и структуры системы автоматизированного управления.

Необходимость в адаптивных (приспособляемых) системах управления возникает в связи с усложнением задач управления при отсутствии практической возможности подробного изучения и описания процессов, протекающих в объектах управления при наличии изменяющихся внешних возмущений. Эффект адаптации достигается за счет того, что часть функций по получению, обработке и анализу процессов в объекте управления выполняется в процессе эксплуатации системы. Такое разделение функций способствует более полному использованию информации о протекающих процессах при формировании сигналов управления и позволяет существенно снизить влияния неопределенности на качество управления. Тем самым, адаптивное управление необходимо в тех случаях, когда влияние неопределенности или «неполноты» априорной информации о работе системы становится существенным для обеспечения заданного качества процессов управления. В настоящее время существует следующая классификация адаптивных систем: самонастраивающиеся системы, системы с адаптацией в особых фазовых состояниях и обучающиеся системы.

Класс самонастраивающихся (экстремальных) систем автоматического управления имеет широкое распространение в виду достаточно простой технической реализации. Этот класс систем связан с тем, что ряд объектов управления или технологических процессов обладают экстремальными зависимостями (минимум или максимум) рабочего параметра от управляющих воздействий. К ним относятся мощные электродвигатели постоянного тока, технологические процессы в химической промышленности, различные типы топок, реактивные двигатели самолетов и т. д. Рассмотрим процессы, протекающие в топке при сжигании топлива. При недостаточной подаче воздуха топливо в топке сгорает не полностью и количество выделяемого тепла уменьшается. При избыточной подаче воздуха часть тепла уносится вместе с воздухом. И только при определенном соотношении между количества воздуха и тепла достигается максимальная температура в топке. В турбореактивном двигателе самолета изменением расхода топлива можно добиться получения максимального давления воздуха за компрессором, а следовательно, и максимальной тяги двигателя. При малом и большом расходах топлива давление воздуха за компрессором и тяга падает. Кроме того необходимо отметить, то обстоятельство, что экстремальные точки объектов управления являются «плавающими» во времени и в пространстве.

В общем случае мы можем утверждать о том, что существует экстремум, а при каких значениях управляющего воздействия он достигается – априори неизвестно. В этих условиях система автоматического управления в процессе эксплуатации должна формировать управляющее воздействие, приводящее объект в экстремальное положение, и удерживать его в этом состоянии в условиях возмущений и «плавающего» характера экстремальных точек. Управляющее устройство при этом является экстремальным регулятором.

По способу получения информации о ткущем состоянии объекта экстремальные системы являются беспоисковыми и поисковыми. В беспоисковых системах наилучшее управление определяется в результате использования аналитических зависимостей между желаемым значением рабочего параметра и параметрами регулятора. В поисковых системах, которые являются медленнодействующими, нахождение экстремума может быть выполнено различными способами. Наибольшее распространение получил метод синхронного детектирования, который сводится к оценке производной dy/du, где y – регулируемый (рабочий) параметр объекта управления, u – управляющее воздействие. Структурная схема, иллюстрирующая способ синхронного детектирования представлена на рис. 6.1.

Рис. 6.1 Структура синхронного детектирования

На вход объекта управления, который обладает экстремальной зависимостью y(u), совместно с управляющим воздействием U подается незначительное возмущение в виде регулярного периодического сигнала f(t) = gsinwt, где g больше нуля и достаточно мало. На выходе объекта управления получим y = y(u + gsinwt). Полученное значение y умножается на сигнал f(t). В результате сигнал А примет значение

А =yf(t) = y(u+gsinwt)gsinwt.

Предполагая, что зависимость y(u) является достаточно гладкой функцией, ее можно разложить в степенной ряд и с достаточной степенью точности ограничится первыми членами разложения

Y(u+gsinwt)=y(u)+gsinwt(dy/du) + 0.5g 2 sin 2 wt(d 2 y/du 2) + ….. .

Т. к. значение g мало, то можно пренебречь членами высшего порядка и в результате получим

Y(u + gsinwt) » y(u) + gsinwt(dy/du).

Тогда, в результате перемножения сигнал А примет значение

А = y(u)sinwt + g 2 sin 2 wt(dy/du).

На выходе фильтра низких частот Ф получим сигнал В

.

Если постоянная времени фильтра Т достаточно велика, то получим

.

Следовательно, сигнал В на выходе фильтра пропорционален производной dy/du

Основными наиболее распространенными типами экстремальных систем, в которых оптимизируется статический режим работы объекта, являются экстремальные системы, которые обеспечивают работу объекта в экстремальной точке его статической характеристики.

Статическая характеристика должна отражать связь между функцией качества работы объекта и режимными параметрами работы объекта.

Экстремальные САУ целесообразно применять:

1. Существует показатель качества (технико-экономический, характеризующий работу объекта, и эта зависимость имеет ярко выраженный экстремум) (чаще всего)

2. Выгоды от увеличения функционала качества.

3. Существует возможность текущего определения функционала качества.

Устройство управления в этом случае называется оптимизатором или экстремальным регулятором.

Функционал качества для установления режима работы записывается: , где – перемен., определяющая режим работы объекта.

В зависимости от того, является ли экстремальная статическая характеристика стабильной или меняется в процессе работы объекта, экстремальные системы делят на две группы: - статические; - динамические.

Статические: Здесь обеспечивается экстремальное управление, соответствующее экстремуму статической характеристики объекта при неизменных параметрах, установленных для данной точки экстремума, и система подобна обычной системе стабилизации режимов.

Динамические: Здесь характеристика может смещаться самостоятельно и точка экстремума тоже. При этом возможно два случая:

Известно как смещается характеристика, и можно обойтись программным управлением;

Смещение самой экстремальной характеристики и точки экстремума носит случайный характер (нужно найти сначала оптимальную точку, затем двигаться к ней).

В экстремальных системах, когда экстремальная характеристика смещается, может быть автоматический поиск экстремума и смещение к нему.

В таких случаях осуществляется две операции:

1. Пробная поисковая (определение соотношения между текущим показателем качества Q и Q extr и определение направления движения. Сводится к определению крутизны характеристики: ).

2. Рабочая (отрабатывает найденные значения изменения настройки регулятора для обеспечения экстремума функции)

Можно определять величину и знак производной или использовать специальный шаговый метод поиска экстремума.

В зависимости от того, используется ли дополнительный сигнал для поиска экстремума, системы делятся:

· системы без дополнительного поискового сигнала (в зависимости от того, используется ли при формировании рабочих операций значения крутизны S 0 или знак производной системы делятся на пропорциональные (определ по крутизне dx раб /dt=h 0 S, т.е. осущ. зависимый поиск и скорость перемещ раб. органа зависит от крутизны, котор. определ «уставку» регулятора) и релейные (направл. движ определ. по знаку dx раб /dt=h 0 SignS= h 0 Sign, т.е. осущ. «независимый поиск» и РО перемещ из одного сост в др. и обратно, приводя объект к экстремуму статич. хар-ки. Здесь лог. устройство переключается при изменении знака производной – это ведет к изменению уставки регулятора и соотв. перемещ. рег. органа. Применяются для малоинерцион. объектов.). Для инерционных систем используется сист. шагового типа (здесь по команде командного генератора через шаг Dt измер. знач. показателя качества. и сравнив. его с заданным Q, в результате происходит или не происходит реверс сигнала на входе)


· сист с доп. поиск. сигналом (на вход подается гармонич сигнал и сигнал с логического устройства. Поиск экстремума проводится на основании исследования фазового сдвига сигнала X n на вых. сист. Поисковый сигнал по отнош. к основному – модулирующий сигнал.

На осн. сигн. X накладывается гармонич. поисковый сигнал и если нач сигн. X соотв. положению слева от точки экстремума (X 1), то на вых. экстр. звена дополнительный поисковый сигнал создаст гармонич. составляющую Q * с той же f, что и поисковый сигнал и фазового сдвига не будет. Осн. сигнал X 3 – гармонич. сост на вых экстр. звена сдвинута отн. поиск. сигн на угол –pi. Осн. сигнал X 2 – гармонич. сост на вых экстр. звена будет иметь f в 2 разка больше чем f исходн. сигнала. Т.о. по фазовом сдвигу м.о. определ. направл. движения.

Многомерные экстремальные сист. строятся для многопараметровых объектов, которые имеют несколько входов и выходов, причем один из выходов имеет экстремальную характеристику, а на др. выходы м/т накладываться ограничения.

Для построения таких экстремальных сист. используют спец. методы матем. программирования и алгоритмич. методы оптимизации.

Условие экстремальной функции многих переменных – это равенство нулю всех ее част. производных по параметрам

В частном случае, если обобщенная функция качества Q представл. экстремал. статич. хар-кой, то для проектирования многомерн. сист. м/б использован метод симплексного планирования и в этом случае в сист. вв. устройство для вычисл. град. экстрем. хар-ки и устройство для формир. сигнала управления.

Принцип построения устройства для выч. град. в опереции поиска экстремума зависит от метода определ. частн. производных и типа применяемого алгоритма.

Наиболее широко используются методы:

1. конечно приращения

2. производной по времени

3. синхронного детектирования

4. применение адаптивной модели

1. Метод конечного приращения основан на замене частных производных отношением конеч. приращений и определением его. При этом поочередно изменяются корд. управления и вычисл. соответств. им приращения, котор. явл. составляющими градиента функции.

2. Также поочередно изменяются управляющие воздействия и вычисляются частн. производные и градиент функции.

Недостатки 1 и 2: необходимость поочередного изменения упр. воздействий и вычисления градиента для каждого изменения упр. сигнала. Это требует доп. времени на расчет.

3. Координаты управления модулируются доп. гармонич. сигналами с различ. амплитудами а ni и частотами w ni . Кол-во детекторов опр. числом независ. координат определяющих экстремум функции Q xi . Выходной сигнал синхр. детектир. пропорционален частн. производн. . Т.к. модулирующие сигналы разделены по частотн. спектру, то составл. градиента определ. параллельно. С использованием ЭВМ это время будет MIN.