Основные инструментальные материалы. Инструментальные материалы

Для изготовления обрабатывающего инструмента в основном применяют четыре группы инструментальных материалов (инструментальные стали, твердые сплавы, сверхтвердые материалы, режущая керамика), каждая из которых подразделяется на несколько подгрупп (рис. 1). Ни один из этих инструментальных материалов не является универсальным и занимает свою нишу в соответствии с показателями вязкости, прочности, износостойкости и твердости.

Рисунок 1 - Классификация инструментальных материалов

В таблице приведены данные о распространенности в России и в мире инструментальных материалов:

Быстрорежущие стали - Высоколегированные инструментальные стали высокой твердости с карбидным упрочнением и содержанием углерода свыше 0,6 %. Повышение качества быстрорежущих сталей достигается при использовании порошковой металлургии (ПМ). Характерными свойствами быстрорежущих сталей, изготовленных методом ПМ, являются высокая прочность на изгиб, в 1,5-2,5 раза более высокая стойкость по сравнению с традиционными марками.


Рисунок 2 - Характеристики инструментальных материалов

Твердые сплавы - это продукты порошковой металлургии, состоящие из зерен карбидов тугоплавких металлов (WC, TiC, TaC), скрепленных вязкой металлической связкой. Чаще всего в качестве связки используется кобальт, отличающийся хорошей способностью смачивать карбиды вольфрама. В твердых сплавах, не содержащих карбидов вольфрама, в качестве связки используется никель с добавками молибдена.

Карбиды вольфрама, титана и тантала обладают высокой твердостью и тугоплавкостью. Чем больше в твердом сплаве карбидов, тем выше его твердость и теплостойкость, но ниже механическая прочность. При увеличении содержания кобальта растет прочность, но твердость и теплостойкость снижаются.

Современные твердые сплавы можно классифицировать по составу на четыре основные группы:

  • § вольфрамокобальтовые (ВК) твердые сплавы WC-Co;
  • § титановольфрамокобальтовые (ТК) твердые сплавы WC-TiC-Co;
  • § титанотанталовольфрамокобальтовые (ТТК) твердые сплавы WC-TiC-TaC-Co;
  • § безвольфрамовые (БВТС) твердые сплавы TiC (TiN)-Ni-Mo.

В зарубежной литературе все твердые сплавы, содержащие вольфрам, называются вольфрамовыми, а не содержащие вольфрама - титановыми.

Вольфрамовые или вольфрамокобальтовые (ВК) твердые сплавы (однокарбидные) состоят из карбида вольфрама WC и кобальта (связки). Сплавы этой группы различаются содержанием кобальта (от 3 до 15%), размерами зерен карбида вольфрама и технологией изготовления. При увеличении содержания кобальта увеличиваются предел прочности твердого сплава при изгибе, ударная вязкость и пластическая деформация, однако, при этом уменьшаются твердость и модуль упругости.

Вольфрамокобальтовые твердые сплавы рекомендуются преимущественно для обработки материалов, дающих при резании стружку надлома: чугунов, цветных металлов (бронз, силуминов, дуралюминов), стеклопластиков. Мелкозернистые и особомелкозернистые сплавы этой группы (имеющие в обозначении буквы М и ОМ, соответственно), рекомендуются также для обработки жаропрочных и коррозионно-стойких сталей и сплавов.

Значительное влияние на физико-механические и эксплуатационные свойства твердых сплавов, в том числе, на основе WC-Co, оказывает размер зерен твердой фазы. В сплавах нормальной зернистости средний размер зерен WC составляет 2-3 мкм. При одинаковом содержании кобальта уменьшение среднего размера зерен приводит к увеличению твердости и износостойкости при незначительном уменьшении прочности.

Титановольфрамовые или титановольфрамокобальтовые (ТК) твердые сплавы WC-TiC-Co (двухкарбидные) предназначены для обработки сталей и цветных металлов (латуней), дающих при резании сливную стружку. По сравнению с твердыми сплавами ВК на основе WC-Co, они обладают большей стойкостью к окислению, твердостью и теплостойкостью, меньшими значениями тепло- и электропроводности, модуля упругости.

Карбиды вольфрама и титана, составляющие основу твердых сплавов, обладают высокой природной теплостойкостью. Теплостойкость сплавов группы ТК составляет: Т5К10 - 1100єС, Т14К8 и Т30К4 - 1150єС. Цифра, стоящая после буквы К, означает процентное содержание кобальта, цифра за буквой Т - содержание TiC, остальное - WC. Увеличение содержания в твердом сплаве карбидов вольфрама и титана при соответствующем уменьшении содержания кобальта ведет к повышению теплостойкости твердых сплавов.

Сплавы Т30К4 и Т15К6 применяются при чистовой и получистовой обработке сталей с высокими скоростями резания и малыми нагрузками на инструмент, а сплавы Т5К10 и Т5К12 предназначены для работы в тяжелых условиях ударных нагрузок с пониженной скоростью резания.

Титанотанталовольфрамовые или титанотанталовольфрамокобальтовые (ТТК) твердые сплавы WC-TiC-TaC-Co (трехкарбидные) отличаются повышенной прочностью и высокой твердостью (в том числе при температурах 600-800С). В обозначениях сплавов этой группы цифры, стоящие за буквами ТТ, означают суммарное содержание карбидов титана и тантала, остальное - WC.

Сплавы группы ТТК по применяемости являются универсальными и их можно использовать как при обработке стали, так и при обработке чугуна. Основная область применения трехкарбидных сплавов - резание с очень большими сечениями среза в условиях точения и строгания, а также обработка с тяжелыми ударами. В этих случаях повышенная прочность, обусловленная наличием карбидов тантала, компенсирует их пониженную теплостойкость.

Приведенные выше обозначения марок твердых сплавов, изготовляемых в России, отражают химический состав данных сплавов. Зарубежные фирмы, как правило, присваивают выпускаемым ими твердым сплавам обозначения, содержащие информацию об областях применения той или иной марки.

Обозначения вольфрамовых твердых сплавов:

Международная организация стандартов ISO (ИСО) предложила систему классификации твердых сплавов, согласно которой все твердые сплавы делятся на группы применяемости в зависимости от материалов, для обработки которых они предназначены. Эта система выделяет: группу твердых сплавов P - для обработки материалов, дающих сливную стружку; группу сплавов K - для обработки материалов, дающих элементную стружку и промежуточную группу сплавов - M.

Чем больше индекс подгруппы применения, тем ниже износостойкость твердого сплава и допустимая скорость резания, но выше прочность (ударная вязкость), допустимая подача и глубина резания. Таким образом, малые индексы соответствуют чистовым операциям, когда от твердых сплавов требуется высокая износостойкость и малая прочность, а большие индексы соответствуют черновым операциям, когда твердый сплав должен обладать высокой прочностью.

Такая система, несмотря на всю ее условность, сыграла положительную роль, так как изготовители инструмента могут наряду с торговой маркой твердого сплава указать условно область его применения, а потребители - выбирать марку твердого сплава, наиболее близко соответствующую условиям работы.

В последние годы перспективным направлением является создание и использование безвольфрамовых твердых сплавов (БВТС). Интенсивные исследования в этом направлении проводятся во всем мире. Наиболее развито производство безвольфрамовых твердых сплавов в Японии (около 40% от общего объема выпуска твердых сплавов), в США, в странах Европы.

Безвольфрамовые твердые сплавы, как и вольфрамосодержащие сплавы, являются продуктами порошковой металлургии, однако в качестве твердой износостойкой фазы в них используются карбид и карбонитрид титана, обладающие высокой твердостью, износо- и окалиностойкостью. В качестве цементирующего металла применяется никель, а для улучшения смачивания карбидной фазы в процессе спекания расплавленной связкой и, одновременно, для снижения хрупкости БВТС в их состав вводится молибден и ниобий.

В России наиболее перспективными с точки зрения практического применения проявили себя безвольфрамовые сплавы ТН20, КНТ16 и ЛЦК20. Сплав марки ТВ4 на основе карбонитрида титана содержит в молибдено-никелевой связке 8-9% вольфрама для повышения его прочности и по сути является маловольфрамовым. Новая группа сплавов ЦТУ и НТН30 имеет повышенную эксплуатационную надежность и расширенную область применения за счет легирования вольфрамом и карбидами титана и ниобия соответственно.

Указанные сплавы предназначены для замены вольфрамосодержащих твердых сплавов группы ТК на операциях точения и фрезерования сталей (области применения Р20-Р30). Однако в целом, несмотря на экономию дорогостоящего вольфрама, БВТС могут служить равноценной заменой вольфрамовых твердых сплавов только при строго определенных условиях обработки, а значительная нестабильность свойств и низкая циклическая прочность не дают возможность рекомендовать их в качестве инструментальных материалов для автоматизированного производства.

Режущая керамика (РК) - это высокая твердость и прочность на сжатие, сохраняет свои свойства при высоких температурах, повышенная износостойкость и стойкость к окислению, но существенно более низкая прочность на изгиб по сравнению с твердыми сплавами.

Режущие керамические материалы можно разделить на четыре группы: 1) оксидная (белая керамика) на основе Al2O3,

  • 2) оксикарбидная (черная керамика) на основе композиции Al2O3-TiC,
  • 3) оксиднонитридная (кортинит) на основе Al2O3-TiN,
  • 4) нитридная керамика на основе Si3N4.

Каждая из этих групп имеет свои особенности, как в технологии изготовления, так и в области применения, обусловленные, в первую очередь, составом и структурой материала. Уменьшение размера зерна и пористости минералокерамики приводит к росту износостойкости, прочности и твердости материала.

Отечественными марками оксидной РК являются ЦМ-332, ВО-13, ВО-18, ВШ-75. В отличие от быстрорежущих сталей и твердых сплавов маркировка РК не отражает ее состав. Согласно производственной практике оксидная керамика предпочтительнее при точении заготовок из незакаленных конструкционных сталей и ферритных ковких чугунов (НВ < 230) при скоростях резания свыше 250 м/мин.

Твердость РК различных марок составляет HRA 93-96, прочность - 400-950 МПа. Такой широкий диапазон основных свойств определяется различным содержанием карбидов и нитридов, а также размером зерен.

Сравнительные характеристики свойств карбидов показали, что наиболее перспективным из них является карбид титана, который обладает высокой твердостью, износостойкостью, достаточной теплопроводностью и упругими свойствами, широко применяется как основа инструментальных материалов. Кроме того, он недефицитен и легко получается восстановлением оксида сажей.

На основании вышесказанного карбид титана был выбран в качестве упрочняющей добавки к оксиду алюминия. Исследование его влияния на свойства оксидно-карбидной композиции позволило выбрать состав и разработать технологию сплава ВОК-71. Состав ВОК-71 состоит из основы Al2O3 с добавкой 20% TiC. По твердости он не уступает сплаву ВОК-63, а по прочности его превосходит. При резании чугуна и стали разной твердости смешанная керамика ВОК-71 показала преимущество перед другими сплавами.

Параллельно с совершенствованием оксидно-карбидных керамических материалов разрабатывались новые марки режущей керамики на основе нитрида кремния. На базе оксидного керамического материала ВШ-75 был разработан керамический материал ОНТ-20 (кортинит).

Кортинит - оксидно-нитридная РК, в состав которой входит мелкодисперсный нитрид титана. Адгезионное взаимодействие кортинита с обрабатываемым материалом менее интенсивное, чем у оксидно-карбидных керамических материалов.

Положительные свойства нитрида титана позволили создать нитридную режущую керамику. По своим свойствам композиция на основе нитрида кремния несколько уступает оксидно-карбидной керамике, однако такой керамический материал имеет высокую прочность на изгиб и низкий коэффициент термического расширения, что выгодно отличает его от ранее рассмотренных типов РК.

Нитридная РК имеет твердость HRC 86-95, предел прочности на растяжение 600-950 МПа, ударную вязкость и теплопроводность выше, чем другие типы керамики. Преимуществом нитридной РК является тот факт, что при температуре 790-900єС ее твердость выше, чем твердость оксидно-карбидной и оксидной РК.

Предпочтительной областью применения нитридной РК является обработка чугунов и жаропрочных сплавов. Для обработки сталей эта РК не рекомендуется из-за высокой интенсивности диффузионного износа. Скорости резания при обработке чугуна сиалоном достигают 1500 м/мин.

Проводятся работы по созданию композиций нитридной РК с карбидами. Например, добавка 20% TiC позволяет на 50% повысить ударную вязкость и твердость, что в свою очередь дает возможность использовать более высокие значения подачи и скорости резания (до 1800 м/мин). Такие композиции рекомендуются прежде всего для обработки никелевых сплавов.

Причинами, сдерживающими широкое применение керамики в металлообработке, являются: низкая прочность, высокая хрупкость, значительная чувствительность к локальным напряжениям и дефектам структуры. Поэтому основная проблема при создании новых керамических материалов - повышение прочности.

В последние годы большое внимание специалистов в области РК уделяется разработке армированной керамики. В качестве армирующего элемента для РК чаще всего используют нитевидные кристаллы карбида кремния SiC (имеющие прочность до 4000 МПа) длиной 20-30 мкм и диаметром до 1 мкм. Отмечается, что подобное армирование позволяет повысить вязкость оксидной РК в 1,5 раза без существенного снижения твердости.

Достаточно длинные кристаллы (в 2 и более раз превышающие размеры зерен матрицы) служат мостиками между зернами, повышая их стабильность под действием нагрузки. Кроме того, разность коэффициентов теплового расширения кристаллов SiC и основы создает при нагреве благоприятные сжимающие напряжения, которые компенсируют напряжения растяжения, возникающие в СМП в процессе резания.

Армированную РК можно применять при прерывистом точении и фрезеровании. Поскольку режущий инструмент из армированной керамики является дорогим, его применение экономически эффективно только в определенных областях, например при обработке заготовок из жаропрочных никелевых сплавов, а также закаленных сталей и чугунов.

Сверхтвердые инструментальные материалы (СТМ) - это инструментальные материалы, имеющие твердость по Виккерсу при комнатной температуре свыше 35 ГПа. Сверхтвердые материалы (СТМ), используемые для оснащения металлорежущих инструментов, разделяются на две основные группы:

  • § СТМ на основе углерода - естественные и искусственные (поликристаллические) алмазы;
  • § СТМ на основе нитрида бора (композиты).

Эти две группы СТМ имеют разные области применения, что обусловлено различием их физико-механических свойств и химического состава.

Природные алмазы обладают целым рядом важных свойств, необходимых для инструментальных материалов. Твердость природных алмазов выше твердости любого природного или синтетического материала. Они имеют низкий коэффициент трения, высокую теплопроводность. При заточке алмазных инструментов обеспечивается радиус округления режущей кромки в пределах долей микрометра, поэтому возможно получение практически идеально острой и прямолинейной режущей кромки, что особенно важно при прецизионной обработке.

Недостатками природных алмазов являются: анизотропия свойств, низкая прочность, сравнительно низкая (700-750єС) теплостойкость и химическая активность к сплавам на основе железа при повышенных температурах, а также высокая стоимость.

Указанные свойства природных алмазов определяют область их эффективного использования: прецизионная обработка деталей из цветных металлов и неметаллических материалов. В частности, алмазные инструменты с радиусом округления режущей кромки 5-6 мкм используются при обработке металлических зеркал, дисков памяти и деталей оптоэлектроники с глубинами резания 12-20 мкм.

Ограниченные запасы природных алмазов, а также их высокая стоимость вызвали необходимость разработки технологии синтетических алмазов. Условия получения синтетических алмазов заключаются в воздействии на алмазообразующий материал, содержащий углерод (графит, сажа, древесный уголь). Воздействие происходит при давлении 60 000 атмосфер при температуре 2000-3000єС, что обеспечивает подвижность атомов углерода и возможность перестройки структуры графита в структуру алмаза.

Синтетические алмазы для режущих инструментов имеют, как правило, поликристаллическую структуру. Примерами отечественных поликристаллических алмазов (ПКА) являются АСПК (карбонадо) и АСБ (баллас). Микротвердость поликристаллических алмазов в среднем такая же, как природных монокристаллов (56-102 ГПа), но диапазон изменения ее у ПКА шире. Плотность синтетических балласа (АСБ) и карбонадо (АСПК) выше, чем плотность природных монокристаллов алмаза, что объясняется наличием определенного количества металлических включений.

Синтетические и природные алмазы нельзя противопоставлять друг другу, они дополняют друг друга и каждый из них имеет свои оптимальные области применения. Но и синтетические и природные алмазы не рекомендуется применять для обработки материалов и сплавов, содержащих железо, что объясняется большим физико-химическим сродством черных металлов и алмаза.

Природных соединений нитрида бора (BN) не существует. Получаемые искусственным путем модификации нитрида бора по виду кристаллической решетки разделяются на графитоподобный, вюртцитный и кубический нитрид бора (КНБ). Плотные модификации BN различаются технологией изготовления, структурой и физико-механическими свойствами.

Примерами отечественных СТМ на основе нитрида бора являются композит 01 (эльбор), композит 02 (белбор), СКИМ-ПК, Петбор, КП3. Наиболее известные зарубежные материалы этой группы - киборит, Wurbon, Borazon, Amborite, Sumiboron.

СТМ на основе BN применяются, в основном, для обработки закаленных сталей (HRC>45) и чугунов (HB>230) с повышенными скоростями резания, и лезвийная обработка с помощью BN во многих случаях более эффективна, чем шлифование.


Рисунок 3 - Классификация СТМ

Таким образом, СТМ представлены двумя направлениями: на основе углерода и на основе нитрида бора. Твердость поликристаллических алмазов выше, чем твердость композитов, а теплостойкость в 1,5-3 раза ниже. Композиты практически инертны к сплавам на основе железа, а алмазы проявляют к ним значительную активность при высоких температурах и контактных давлениях, имеющих место в зоне резания. Поэтому режущие инструменты из композитов применяют главным образом при обработке сталей и чугунов, а алмазные инструменты - при обработке цветных металлов и сплавов, а также неметаллических материалов.

Возможность внедрения сверхтвердых материалов в настоящее время сдерживается состоянием оборудования. Только около 50% существующих станков могут обеспечить требуемый уровень скоростей резания, около 25% станков нуждаются в модернизации и около 25% непригодны для использования инструментов, оснащенных СТМ.

С другой стороны возможность реализации оптимальных для СТМ высоких скоростей резания на новом оборудовании, обладающем необходимыми характеристиками по мощности, жесткости и виброустойчивости, обеспечивает значительное повышение производительности металлообработки.

Абразивные материалы - это зерна абразивного материала с острыми кромками служат режущими элементами шлифовальных инструментов. Подразделяются на естественные и искусственные. К естественным абразивным материалам относятся такие минералы, как кварц, наждак, корунд и др. В промышленности наиболее распространенными являются искусственные абразивные материалы: электрокорунды, карбиды кремния и бора. К искусственным абразивным материалам относятся также полировально-доводочные порошки - оксиды хрома и железа.Особую группу искусственных абразивных материалов составляют синтетические алмазы и кубический нитрид бор, которые являются наиболее перспективными, так как обладают максимальной твердостью (алмаз) и термостойкостью (КНБ).

Инновационное направление

Перспективной является нанотехнология в производстве режущих инструментов. Согласно экспертному прогнозу, доля использования нанотехнологий на российском рынке для моноинструментов составляет сейчас 63%, а для сборного 6%.

Перспективные нанотехнологии в производстве обрабатывающего инструмента.

Режущие инструменты работают в условиях значительных силовых нагрузок, высоких температур, трения и износа. Поэтому инструментальные материалы должны обладать определенными эксплуатационными физико-механическими свойствами. Материал режущей части инструмента должен иметь большую твердость и высокие значения допустимых напряжений на изгиб, растяжение, сжатие, кручение. Твердость материала режущей части инструмента должна значительно превышать твердость материала обрабатываемой заготовки.

Высокие прочностные свойства необходимы для того, чтобы инструмент обладал сопротивляемостью соответствующим деформациям в процессе резания, а достаточная вязкость материала позволяла бы воспринимать ударную динамическую нагрузку, возникающую при обработке заготовок из хрупких материалов или с прерывистой обрабатываемой поверхностью. Инструментальные материалы должны обладать высокой красностойкостью, т.е. сохранять большую твердость и режущие свойства при высоких температурах нагрева. Важнейшей характеристикой материала режущей части инструмента служит износостойкость. Чем выше износостойкость, тем медленнее изнашивается инструмент и выше его размерная стойкость. Это значит, что заготовки, последовательно обработанные одним и тем же инструментом, будут иметь минимальное рассеяние размеров обработанных поверхностей. В целях повышения износостойкости на режущую часть инструментов специальными методами наносят одно- и многослойные покрытия из карбидов вольфрама, нитридов титана. Материалы для изготовления инструментов должны по возможности иметь наименьшее процентное содержание дефицитных элементов.

2. ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ

Углеродистые инструментальные стали содержат 1,0 ... 1,3 % С. Для изготовления инструментов применяют качественные стали У10А, УНА, У12А. После термической обработки стали (HRC э 60 ... 62) имеют красностойкость 200 ... 240 °С. При этой температуре твердость стали резко уменьшается и инструменты не могут выполнять работу резания. Допустимые скорости резания не превышают 0,2 ... 0,3 м/с. Из этих сталей изготовляют метчики, плашки, ножовочные полотна, сверла и зенкеры малых диаметров.

Легированные инструментальные стали - это углеродистые инструментальные стали, легированные хромом (X), вольфрамом (В), ванадием (Ф), кремнием (С) и другими элементами. После термообработки легированные стали (НКС Э 62 ... 64) имеют красностойкость 220 ... 260 °С. Легированные стали по сравнению с углеродистыми имеют повышенную вязкость в закаленном состоянии, более высокую прокаливаемость, меньшую склонность к деформациям и появлению трещин при закалке. Допустимая скорость резания 0,25 ... 0,5 м/с. Для изготовления протяжек, сверл, метчиков, плашек, разверток используют стали 9ХВГ, ХВГ, ХГ, 6ХС, 9ХС.

Быстрорежущие стали содержат 5,5 ... 19 % W, 3,8 ... 4,4 % С, 2 ... 10 % Со и V. Для изготовления инструментов используют стали Р9, Р12, Р18, Р6МЗ, Р6М5, Р9Ф5, Р14Ф2, Р9К5, Р9К10, Р10К5Ф2. Режущий инструмент из быстрорежущей стали после термической обработки (НКСЭ 62 ... 65) имеет красностойкость 600 ... 640 °С и обладает повышенной износостойкостью;

он может работать со скоростями резания до 2 м/с.

Сталь Р9, например, рекомендуют для изготовления инструментов простой формы (резцов, фрез, зенкеров). Кобальтовые быстрорежущие стали Р9К5, Р18К5Ф2, Р9К10 применяют для обработки труднообрабатываемых материалов в условиях прерывистого процесса резания. Ванадиевые быстрорежущие стали Р9Ф5, Р14Ф4 рекомендуют для изготовления инструментов, предназначенных для чистовой обработки (протяжки, развертки, шеверы). Их применяют для обработки труднообрабатываемых материалов при срезании стружек малого поперечного сечения.

Вольфрамомолибденовые стали Р9М4, Р6МЗ используют для инструментов, работающих в условиях черновой обработки и для изготовления протяжек, долбяков, шеверов, фрез.

Для экономии быстрорежущих сталей режущий инструмент изготовляют сборным или сварным. Режущую часть инструмента делают из быстрорежущей стали, которую сваривают с присоединительной частью из конструкционных сталей 45, 50, 40Х. Часто используют пластинки из быстрорежущей стали, которые приваривают к державкам или корпусам инструментов.

3. ТВЕРДЫЕ СПЛАВЫ

Твердые сплавы - это твердый раствор карбидов вольфрама, титана и тантала (WC, TiC, TaC) в металлическом кобальте (Со). Твердые сплавы применяют в виде пластинок определенных форм и размеров, изготовляемых порошковой металлургией. Пластинки предварительно прессуют, а затем спекают при температуре 1500... 1900 °С.

Твердые сплавы делят на группы: вольфрамовую - ВК2, ВКЗ, ВКЗМ, ВК4, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титановольфрамовую - ТЗОК4, Т15К6, Т14К8, Т5К10, Т5К12В; титанотанталовольфрамовую - ТТ7К12, ТТ10К8Б. Пластинки твердого сплава (HRA, 86 ... 92) обладают высокими износостойкостью и красностойкостью (800 ... 1250 °С), что позволяет вести обработку со скоростями резания до 15 м/с. Пластинки припаивают к державкам или корпусам инструментов медными, латунными припоями или крепят механическим способом.

В промышленности применяют многогранные неперетачиваемые твердосплавные пластинки (трех-, четырех-, пяти-, шестигранные), которые крепят механическим способом. После изнашивания одной из режущих кромок такой пластинки в работу вводят следующую. Недостаток твердых сплавов - пониженная пластичность.

Твердые сплавы группы ВК используют для обработки заготовок из хрупких металлов, пластмасс, неметаллических материалов; сплавы группы ТВК - для обработки заготовок из пластичных и вязких металлов и сплавов. Мелкозернистые твердые сплавы ВК6М применяют для обработки заготовок из труднообрабатываемых коррозионно-стойких и жаропрочных сталей и сплавов, твердых чугунов, бронз, закаленных сталей, сплавов легких металлов, сплавов титана, фарфора, керамики, стекла, ферритов. Трехкар-бидные сплавы ТТК отличаются от групп сплавов ВК и ТВК повышенными износостойкостью, прочностью и вязкостью. Их применяют для обработки заготовок из труднообрабатываемых сталей аустенитного класса.

4. СИНТЕТИЧЕСКИЕ
СВЕРХТВЕРДЫЕ И
КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

Эффективность обработки заготовок на автоматических линиях, станках с ЧПУ, многоцелевых станках, в гибких производственных модулях и системах в значительной степени зависит от материалов режущей части инструментов. Высокая эффективность работы этих систем обеспечивается применением новых сверхтвердых материалов и керамики.

В настоящее время инструментальная промышленность выпускает материалы на основе нитрида бора (композиты) и на основе оксида алюминия (керамика).

Существует большое разнообразие сверхтвердых материалов (СТМ) на основе плотных модификаций нитрида бора. Группы СТМ различаются технологией производства, структурами и физико-механическими свойствами.

СТМ на основе фазового превращения графитоподобного нитрида бора в кубический. Производят композит 01 (эльбор) в композит 02 (белбор). Применяют для тонкого и чистового точения резцами в условиях безударной нагрузки и торцового фрезерования закаленных сталей и чугунов любой твердости, твердых сплавов с содержанием кобальта более 15 %.

СТМ на основе частичного или полного превращения вюрцитного нитрида бора в кубический. Производят композит 01 (гексанит-Р) и модификации композита 09-ПТНБ (поликристалл твердого нитрида бора), ПТНБ-ИК и др. Гексанит-Р и пластины из композита 10Д (композит 10 на подложке из твердого сплава) применяют для предварительного и окончательного точения и торцового фрезерования сталей и чугунов любой твердости, твердых сплавов в условиях безударной или ударной динамической нагрузки (наличие на обрабатываемой поверхности отверстий, пазов, ребер).

СТМ на основе спекания частиц кубического нитрида бора (КНБ). Производят композит 05, киборит и ниборит. Используют следующие технологии изготовления: вдавливание частиц КНБ в металлическую матрицу; спекание зерен КНБ с зернами связки; спекание в условиях химического взаимодействия зерен КНБ со связкой.

Композит 05 применяют для предварительного и чистового точения и торцового фрезерования закаленных деталей из чугунов любой твердости с наличием поверхностной литейной корки.

Инструментальные керамические материалы можно разделить на группы, различающиеся химическим составом, методом производства и областями рационального использования.

Оксидная "белая" керамика, состоящая из А1 2 О 3 с легирующими добавками MgO, ZrO 2 и др. Марки керамики: ЦМ332, ВО-13. Применяют для чистовой и получистовой обработки незакаленных сталей и серых чугунов со скоростями резания до 15 м/с.

Оксидно-карбидная "черная" керамика, состоящая из Al 2 O 3 (до 60 %), TiC (20 ... 40 %), ZrO 2 (20 ... 40 %) и других карбидов тугоплавких металлов. Марка керамики ВОК-60. Применяют для чистовой и получистовой обработки ковких, высокопрочных и отбеленных модифицированных чугунов и закаленных сталей.

Керамика на основе нитрида кремния с легированием оксидами иттрия, циркония, алюминия. Марка силинит-Р, получаемая способом горячего прессования. Применяют для получистовой обработки чугунов.

Основным направлением конструирования инструментов из СТМ и керамики является создание резцов и фрез с механическим креплением цельных и двухслойных круглых и многогранных режущих пластин.

Основные требования к инструментальным материалам следующие:

1. Инструментальный материал должен иметь высокую твердость в состоянии поставки или достигаемую в результате его термической обработки – не менее 63…66 HRC по Роквеллу.

2. Необходимо, чтобы при значительных температурах резания твердость поверхностей инструментов существенно не уменьшалась. Способность материала сохранять высокую твердость при повышенных температурах и исходную твердость после охлаждения называется теплостойкостью. Инструментальный материал должен обладать высокой теплостойкостью.

3. Наряду с теплостойкостью, инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом.

4. Важным требованием является достаточно высокая прочность инструментального материала. Если высокая твердость материала рабочей части инструмента сопровождается значительной хрупкостью, это приводит к поломке инструмента и выкрашиванию режущих кромок.

5. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов. Для инструментальных сталей – это хорошая обрабатываемость резанием и давлением; благоприятные особенности термической обработки; хорошая шлифуемость после термической обработки. Для твердых сплавов особое значение приобретает хорошая шлифуемость, а также отсутствие трещин и других дефектов, возникающих в твердом сплаве после припайки пластин, при шлифовании и заточке инструмента.

ВИДЫ ИНСТРУМЕНТАЛЬНЫХ МАТЕРИАЛОВ И ОБЛАСТИ ИХ ПРИМЕНЕНИЯ.

Ранее всех материалов начали применять углеродистые инструментальные стали марок У7, У7А … У13, У 13А. Кроме железа они содержат 0,2…0,4 % марганца, обладают достаточной твердостью при комнатной температуре, но их теплостойкость невелика, так как при сравнительно невысоких температурах (200…250°С) их твердость резко уменьшается.

Легированные инструментальные стали по своему химическому составу отличаются от углеродистых повышенным содержанием кремния или марганца, или наличием одного или нескольких легирующих элементов: хрома (увеличивает твердость, прочность, коррозионную стойкость материала, понижает его пластичность); никеля (повышает прочность, пластичность, ударную вязкость, прокаливаемость материала); вольфрама (повышает твердость и теплостойкость материала); ванадия (повышает твердость и прочность материала, способствует образованию мелкозернистой структуры); кобальта (увеличивает ударную вязкость и жаропрочность материала); молибдена (повышает упругость, прочность, теплостойкость материала). Для режущих инструментов используются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами – лучшей закаливаемостью и прокаливаемостью, меньшей склонностью к короблению, но теплостойкость их практически равна теплостойкости углеродистых сталей 350…400°С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназначенных для обработки на станках с низкими скоростями резания (мелкие сверла, развертки).

Быстрорежущие инструментальные стали. Из группы высоколегированных сталей для изготовления режущих инструментов используются быстрорежущие стали с высоким содержанием вольфрама, молибдена, кобальта, ванадия. Современные быстрорежущие стали можно разделить на три группы.

К сталям нормальной теплостойкости относятся вольфрамовые Р18, Р12, Р9 и вольфрамомолибденовые Р6М5, Р6М3, Р8М3. Эти стали имеют твердость в закаленном состоянии 63…66HRC, предел прочности при изгибе 2900…3400Мпа, ударную вязкость 2,.7…4,8 Дж/м 2 и теплостойкость 600…650°С. Они используются при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс. Иногда применяются быстрорежущие стали, дополнительно легированные азотом (Р6АМ5, Р18А и др.), которые являются модификациями обычных быстрорежущих сталей. Легирование азотом повышает режущие свойства инструмента на 20…30%, твердость – на 1 – 2 единицы HRC.

Стали повышенной теплостойкости характеризуются повышенным содержанием углерода – 10Р8М3, 10Р6М5; ванадия – Р12Ф3, Р2М3Ф8; Р9Ф5; кобальта – Р18Ф2К5, Р6М5К5, Р9К5, Р9К10, Р9М4К8Ф, 10Р6М5Ф2К8 и др.

Твердость сталей в закаленном состоянии достигает 66…70HRC, они имеют более высокую теплостойкость (до 620…670°С). Это дает возможность использовать их для обработки жаропрочных и нержавеющих сталей и сплавов, а также конструкционных сталей повышенной прочности и закаленных. Период стойкости инструментов из таких сталей в 3 – 5 раз выше, чем из сталей Р18, Р6М5.

Стали высокой теплостойкости характеризуются пониженным содержанием углерода, но весьма большим количеством легирующих элементов – В11М7К23, В14М7К25, 3В20К20Х4Ф. Они имеют твердость 69…70HRC, и теплостойкость 700…720°С. Наиболее рациональная область их использования – резание труднообрабатываемых материалов и титановых сплавов. В последнем случае период стойкости инструментов в 30 – 80 раз выше, чем из стали Р18, и в 8 – 15 раз выше, чем из твердого сплава ВК8. При резании конструкционных сталей и чугунов период стойкости возрастает менее значительно (в 3 – 8 раз).

Твердые сплавы. Эти сплавы получают методами порошковой металлургии в виде пластин или коронок. Основными компонентами таких сплавов являются карбиды вольфрама WC, титана TiC, тантала TaC и ниобия NbC, мельчайшие частицы которых соединены посредством сравнительно мягких и менее тугоплавких кобальта или никеля в смеси с молибденом.

Твердые сплавы имеют высокую твердость – 88…92 HRA (72…76 HRC) и теплостойкость до 850…1000°С. Это позволяет работать со скоростями резания в 3 – 4 раза большими, чем инструментами из быстрорежущих сталей.

Применяемые в настоящее время твердые сплавы делятся:

1) на вольфрамовые сплавы группы ВК: ВК3, ВК3-М, ВК4, ВК6, ВК6-М, ВК6-ОМ, ВК8 и др. В условном обозначении цифра показывает процентное содержание кобальта. Например, обозначение ВК8 показывает, что в нем 8% кобальта и 92% карбидов вольфрама. Буквами М и ОМ обозначается мелкозернистая и особо мелкозернистая структура;

2) на титановольфрамовые сплавы группы ТК: Т5К10, Т15К6, Т14К8, Т30К4, Т60К6 и др. В условном обозначении цифра, стоящая после буквы Т, показывает процентное содержание карбидов титана, после буквы К – кобальта, остальное – карбиды вольфрама;

3) на титанотанталовольфрамовые сплавы группы ТТК: ТТ7К12, ТТ8К6, ТТ20К9и др. В условном обозначении цифры, стоящие после буквы Т, показывают процентное содержание карбидов титана и тантала, после буквы К – кобальта, остальное – карбиды вольфрама;

4) на безвольфрамовые твердые сплавы ТМ-1, ТМ-3, ТН-20, КНТ-16, ТС20ХН. Обозначения условные.

Твердые сплавы выпускаются в виде стандартизованных пластин, которые припаиваются, приклеиваются или крепятся механически к державкам из конструкционной стали. Выпускаются также инструменты, рабочая часть которых целиком выполнена из твердого сплава (монолитные).

Сплавы группы ТК имеют более высокую теплостойкость, чем сплавы ВК. Они могут использоваться при высоких скоростях резания, поэтому их широко применяют при обработке сталей.

Инструменты из твердых сплавов группы ВК применяют при обработке деталей из конструкционных сталей в условиях низкой жесткости системы СПИД, при прерывистом резании, при работе с ударами, а также при обработке хрупких материалов типа чугуна, что обусловлено повышенной прочностью этой группы твердых сплавов и не высокими температурами в зоне резания. Их также используют при обработке деталей из высокопрочных, жаропрочных и нержавеющих сталей, титановых сплавов. Это объясняется тем, что наличие в большинстве этих материалов титана вызывает повышенную адгезию со сплавами группы ТК, также содержащими титан. Сплавы группы ТК имеют значительно худшую теплопроводность и более низкую прочность, чем сплавы ВК.

Введение в твердый сплав карбидов тантала или карбидов тантала и ниобия (ТТ10К8-Б) повышает его прочность. Однако температура теплостойкости этих сплавов ниже, чем у двух карбидных.

Особомелкозернистые твердые сплавы применяют для обработки материалов с большой истирающей способностью. Их применяют для чистовой и получистовой обработки деталей из высокопрочных вязких сталей с повышенной склонностью к наклепу.

Сплавы с низким содержанием кобальта (Т30К4, ВК3, ВК4) применяют на чистовых операциях, с большим содержанием кобальта (ВК8, Т14К8, Т5К10) используют на черновых операциях.

Минералокерамика. Ее основу составляют оксиды алюминия Al 2 О 3 с небольшой добавкой (0,5…1%) оксида магния MgO. Высокая твердость, теплостойкость до 1200°С, химическая инертность к металлам, сопротивление окислению во многом превосходят эти же параметры твердых сплавов, но уступает по теплопроводности и имеет более низкий предел прочности на изгиб.

Высокие режущие свойства минералокерамики проявляются при скоростной обработке сталей и высокопрочных чугунов, причем чистовое и получистовое точение и фрезерование повышает производительность обработки деталей до 2 раз при одновременном возрастании периодов стойкости инструментов до 5 раз по сравнению с обработкой инструментами из твердого сплава. Минералокерамика выпускается в виде неперетачиваемых пластин, что существенно облегчает условия ее эксплуатации.

Сверхтвердые инструментальные материалы (СТМ) – наиболее перспективные – это синтетические сверхтвердые материалы на основе алмаза или нитрида бора.

Для алмазов характерны высокая твердость и износостойкость. По абсолютной твердости алмаз в 4-5 раз тверже твердых сплавов и в десятки и в сотни раз превышает износостойкость других инструментальных материалов при обработке цветных сплавов и пластмасс. Вследствие высокой теплопроводности алмазы лучше отводят теплоту из зоны резания, однако, из-за их хрупкости область их применения сильно ограничена. Существенный недостаток алмаза – при повышенной температуре он вступает в химическую реакцию с железом и теряет работоспособность.

Поэтому были созданы новые сверхтвердые материалы, химически инертные к алмазу. Технология получения их близка к технологии получения алмазов, но в качестве исходного вещества использовался не графит, а нитрид бора.

НАЗНАЧЕНИЕ ГЕОМЕТРИИ ИНСТРУМЕНТА И ОПТИМАЛЬНЫХ РЕЖИМОВ РЕЗАНИЯ ПРИ ТОЧЕНИИ, СВЕРЛЕНИИ, ФРЕЗЕРОВАНИИ.

Выбор заднего угла a. Известно, что при обработке сталей больший оптимальный угол a соответствует меньшей толщине срезаемого слоя: sin a опт =0,13/а 0,3 .

Для практических целей при обработке сталей рекомендуются следующие значения задних углов: для черновых резцов при S>0,3мм/об - a=8°; для чистовых резцов при S<0,3 мм/об - a=12°; для торцовых и цилиндрических фрез - a=12…15°.

Значение задних углов при обработке чугунов несколько меньше, чем для обработки сталей.

Выбор переднего угла g. Передний угол должен быть тем больше, чем меньше твердость и прочность обрабатываемого материала и чем больше его пластичность. Для инструментов из быстрорежущей стали при обработке мягких сталей угол g=20…30°, сталей средней твердости - g=12…15°, чугуна - g=5…15° и алюминия - g=30…40°. У твердосплавного инструмента передний угол делается меньшим, а иногда даже отрицательным в силу того, что этот инструментальный материал менее прочный, чем быстрорежущая сталь. Однако уменьшение g приводит к росту сил резания. Для снижения сил резания в таком случае на передней поверхности как твердосплавного, так и быстрорежущего инструмента затачивают отрицательную фаску.

Выбор главного угла в плане j. При обработке нежестких деталей для уменьшения радиальной составляющей Р у главный угол в плане следует увеличивать до j=90°. В отдельных случаях угол j назначают из конструктивных соображений. Главный угол в плане влияет также на шероховатость обработанной поверхности, поэтому при чистовой обработке рекомендуется использовать меньшие значения j.

Выбор вспомогательного угла в плане j 1 . Для отдельных видов инструментов j 1 колеблется в пределах от 0 до 2…3°. Например, у сверл и метчиков j 1 =2…3¢, а у отрезного резца j 1 =1…3°.

Выбор угла наклона главной режущей кромки l. Рекомендуемые углы для чистовых и черновых резцов из быстрорежущей стали соответственно l=0…(-4)° и l=5…+10°, для твердосплавных резцов при работе их без ударов и с ударами соответственно l=5…+10° и l=5…+20°.

Назначение оптимальных режимов резания :

1. Прежде всего, выбирают инструментальный материал , конструкцию инструмента и геометрические параметры его режущей части. Материал режущей части выбирают в зависимости от свойств обрабатываемого материала, состояния поверхности заготовки, а также от условий осуществляемого резания. Геометрические параметры инструмента назначаются в зависимости от свойств обрабатываемого материала, жесткости технологической системы, вида обработки (черновой, чистовой или отделочной) и других условий резания.

2. Назначают глубину резания с учетом припуска на обработку. При черновой обработке желательно назначать глубину резания, обеспечивающую срезание припуска за один проход. Количество проходов свыше одного при черновой обработке следует допускать в исключительных случаях при снятии повышенных припусков. Получистовая обработка часто производится в два прохода. Первый, черновой, осуществляется с глубиной резания t=(0,6…0,75)h, а второй, окончательный с t=(0,3…0,25)h. Обработка в два прохода в этом случае вызвана тем, что при снятии слоя толщиной свыше 2мм за один проход качество обработанной поверхности низкое, а точность ее размеров недостаточна. При чистовой обработке в зависимости от точности и шероховатости обработанной поверхности глубину резания назначают в пределах 0,5…2,0мм на диаметр, а при обработке с шероховатостью менее Ra 1,25 – в пределах 0,1…0,4мм.

3. Выбирают подачу (при точении и сверлении – S 0 , мм/об; при фрезеровании S z , мм/зуб).При черновой обработке она устанавливается с учетом жесткости технологической станочной системы, прочности детали, способа ее крепления (в патроне, в центрах и т.д.), прочности и жесткости рабочей части режущего инструмента, прочности механизма подачи станка, а также установленной глубины резания. При чистовой обработке назначение подачи необходимо согласовывать с заданной шероховатостью обработанной поверхности и квалитетом точности, учитывая при этом возможный прогиб детали под действием сил резания и погрешности геометрической формы обработанной поверхности. После выбора нормативной подачи производят проверочные расчеты по формулам: Р х = , или .

4. Определяют скорость резания. Скорость резания, допускаемая режущим инструментом при определенном периоде его стойкости, зависит от глубины резания и подачи, материала режущей части инструмента и его геометрических параметров, от обрабатываемого материала, вида обработки, охлаждения и других и других факторов.

При данных глубине резания, подаче и периоде стойкости можно рассчитать скорость резания: при точении: ; при сверлении: ; при фрезеровании: .

5. При черновой обработке проверяется выбранный режим резания по мощности станка. В этом случае должно соблюдаться соотношение: N рез £1,3hN ст. Если окажется, что мощности электродвигателя станка, на котором производится обработка, не хватает, надо выбрать более мощный станок. Если это невозможно, необходимо уменьшить выбранные значения u или S.

6. Определяют основное время каждого прохода (формулы для его расчета при различных видах обработки приводятся в нормативно-справочной литературе.

ПРОЦЕСС ШЛИФОВАНИЯ

Шлифование – процесс резания металлов, осуществляемый зернами абразивного материала. Шлифованием можно практически обрабатывать любые материалы, так как твердость зерен абразива (2200…3100НВ) и алмаза (7000НВ) очень велика. Для сравнения отметим, что твердость твердого сплава 1300НВ, цементита 2000НВ, закаленной стали 600…700НВ. Зерна абразива скрепляются связкой в инструменты различной формы или наносятся на ткань (абразивные шкурки). Шлифование применяется чаще всего как отделочная операция и позволяет получать детали 7…9-го и даже 6-го квалитетов с шероховатостью Ra=0,63…0,16мкм и менее. В некоторых случаях шлифование применяется при обдирке отливок и поковок, при зачистке сварных швов, т.е. как подготовительная или черновая операция. В настоящее время применяется глубинное шлифование для съема больших припусков.

Характерными особенностями процесса шлифования являются следующие:

1) многопроходность, способствующая эффективному исправлению погрешностей формы и размеров деталей, полученных после предшествующей обработки;

2) резание осуществляется большим количеством беспорядочно расположенных абразивных зерен, обладающих высокой микротвердостью (22000…31000Мпа). Эти зерна, образующие прерывистый режущий контур, прорезают мельчайшие углубления, а объем металла, срезаемый в единицу времени, в этом случае значительно меньше, чем при резании металлическим инструментом. Одним абразивным зерном в единицу времени срезается примерно в 400000 раз меньший объем металла, чем одним зубом фрезы;

3) процесс срезания стружки отдельным абразивным зерном осуществляется на высоких скоростях резания (30…70м/с) и за очень короткий промежуток времени (в течение тысячных и стотысячных долей секунды);



абразивные зерна расположены в теле круга хаотически. Они являются многогранниками неправильной формы и имеют округленные радиусом r вершины (Стр. 301).

Округление это невелико (обычно r=8…20 мкм), но его всегда надо учитывать, так как при микрорезании толщины слоев, снимаемых отдельными зернами, соизмеримы с r;

5) большие скорости резания и неблагоприятная геометрия режущих зерен способствует развитию в зоне резания высоких температур (1000…1500°С);

6) управлять процессом шлифования можно только за счет изменения режимов резания, так как изменение геометрии абразивного зерна, выполняющего роль резца или зуба фрезы, практически трудноосуществимо. Алмазные круги с помощью специальной технологии изготовления могут иметь преимущественную (требуемую) ориентировку алмазных зерен в теле круга, что обеспечивает более благоприятные условия резания;

7) абразивный инструмент может в процессе работы самозатачиваться. Это происходит, когда режущие грани зерен затупляются, что вызывает увеличение сил резания, а следовательно, и сил, действующих на зерно. В результате затупленные зерна выпадают, вырываются из связки или раскалываются, и в работу вступают новые острые зерна;

8) шлифованная поверхность образуется в результате одновременного действия как геометрических факторов, характерных для процесса резания, так и пластических деформаций, сопровождающих этот процесс.

Что касается геометрической схемы образования шлифованной поверхности, необходимо иметь в виду следующее:



для большего соответствия действительному процессу стружкообразования следует рассматривать врезание зерен в шероховатую поверхность, а сами зерна считать хаотично расположенными во всем объеме круга (Стр. 302).

Шлифование должно рассматриваться как явление пространственное, а не плоскостное. В зоне резания обрабатываемая элементарная поверхность за время ее контакта со шлифовальным кругом соприкасается не с одним рядом зерен, а с несколькими;

2) чем меньше неровности абразивного режущего инструмента, тем ближе он подходит к сплошному режущему лезвию и тем менее шероховатой получается обработанная поверхность. Одинаковый режущий контур можно создать уменьшением номера зернистости или увеличением времени абразивного воздействия, например, за счет понижения скорости вращения детали или уменьшения продольной подачи за один оборот изделия;

3) упорядоченный режущий рельеф достигается алмазной правкой. В процессе шлифования по мере разрушения и выпадания отдельных зерен упорядоченный режущий рельеф нарушается;

4) абразивные зерна в процессе резания можно разделить на режущие (например, зерна 3, 7), скоблящие, если они врезаются на столь малую глубину, что происходит лишь пластическое выдавливание металла без снятия стружки, давящие 5 и нережущие 4. В реальном процессе шлифования примерно 85…90% всех зерен не режет, а так или иначе пластически деформирует тончайший поверхностный слой, т.е. наклепывает его.

5) на шероховатость влияет не только зернистость, но и связка абразивного инструмента, оказывающая полирующий эффект, который больше проявляется при меньших скоростях вращения круга.

ХАРАКТЕРИСТИКИ АБРАЗИВНОГО ИНСТРУМЕНТА И НАЗНАЧЕНИЕ РЕЖИМОВ ШЛИФОВАНИЯ

Все абразивные материалы делятся на две группы: естественные и искусственные. К естественным материалам относятся корунд и наждак, состоящие из Al 2 O 3 и примесей. Из искусственных абразивных материалов наиболее широкое распространение получили: электрокорунд, карбид кремния, карбид бора, синтетический алмаз, кубический нитрид бора (КНБ), белбор.

Под зернистостью абразивных материалов понимают размеры их зерен. По своим размерам (крупности) они делятся по номерам:

1) 200, 160, 125, 100, 80, 63, 50, 40, 32, 25, 20, 16 – шлифзерно;

2) 12, 10, 8, 6, 5, 4, 3 – шлифпорошки;

3) М63, М50, М40, М28, М20, М14 – микропорошки;

4) М10, М7, М5 – тонкие микропорошки.

Зернистость микропорошков определяется размером зерен основной фракции в мкм. Согласно ГОСТ 3647-80, различают следующие фракции зерна: В (60…55%), П (55…45%), Н (45…40%), Д (43…39% зерен основной фракции).

Под твердостью кругов понимается способность связки удерживать абразивные зерна от вырывания их с поверхности круга под действием внешних сил, или степень сопротивления связки вырыванию зерен круга из материала связки.

По твердости круги на керамической и бакелитовой связках, согласно ГОСТ 18118-79, делятся на семь классов: М – мягкие (М1, М2, М3), М2 тверже, чем М1; СМ – среднемягкие (СМ1, СМ2); С – средние (С1, С2); СТ – среднетвердые (СТ1, СТ2, СТ3); Т – твердые (Т1, Т2); ВТ – весьма твердые (ВТ); ЧТ – чрезвычайно твердые (ЧТ).

Круги на вулканитовой связке различаются по твердости: среднемягкая (СМ), средняя (С), среднетвердая (СТ) и твердая (Т).

ГОСТ 2424-83 предусматривает изготовление шлифовальных кругов трех классов точности: АА, А и Б. В зависимости от класса точности кругов должны применяться шлифовальные материалы со следующими индексами: В и П – для класса точности АА; В, П и Н – для класса точности А; В, П, Н и Д – для класса точности Б.

Под структурой шлифовального круга понимается его внутренне строение, т. е. процентное соотношение и относительное расположение зерен, связки и пор в единице объема круга: V з +V с +V п =100%.

Основой системы структур является содержание абразивных зерен в единице объема инструмента:

Номер структуры
Содержание зерен, %

Структуры с 1 по 4 – закрытые или плотные; с 5 по 8 – средние; с 9 по 12 – открытые.

ГОСТ 2424-83 регламентирует выпуск 14 профилей шлифовальных кругов диаметром 3…1600мм, толщиной 6…250мм.

Оптимальным режимом резания при шлифовании следует считать режим, который обеспечивает высокую производительность, наименьшую себестоимость и получение требуемого качества шлифованной поверхности.

Для определения режима шлифования:

1) выбирается характеристика шлифовального круга и устанавливается его окружная скорость u к;

2) назначается поперечная подача (глубина резания t) и определяется число проходов, обеспечивающих снятие всего припуска. Подача варьируется в пределах 0,005…0,09 мм за двойной ход;

3) назначается продольная подача в долях ширины круга S пр =КВ, где К=0,4…0,6 для чернового, К=0,3…0,4 – для чистового шлифования;

4) выбирается окружная скорость вращения детали u д. При черновом шлифовании следует исходить из установленного периода стойкости круга (Т=25…60мин), при чистовом – из обеспечения заданной шероховатости поверхности. Обычно скорость вращения детали находится в пределах 40…80м/мин;

5) подбирается охлаждающая жидкость;

6) определяются силы резания и мощность, необходимые для обеспечения процесса шлифования. Мощность (кВт),необходимая для вращения круга, N k ³P z u к /10 3 h, а для вращения детали N д ³P z u д /(60×10 3 h);

7) выбранные режимы шлифования корректируются по паспорту станка. При нехватке мощности уменьшаются u д или S, т.к. они влияют на мощность резания N к и машинное время t м;

8) проверяются условия бесприжогового шлифования по удельной мощности, приходящейся на 1 мм ширины круга: N уд =N к /В. Она должна быть меньше допустимой удельной мощности, приводимой в справочной литературе;

9) подсчитывается машинное время.


Похожая информация.


Углеродистые и легированные инструментальные стали. Номенклатура инструментальных материалов раз­нообразна. Ранее других материалов для изготовления режущих инструментов начали применять углеродистые инструментальные стали марок У7, У7А...У13, У13А. Помимо железа и углерода, эти стали содержат 0,2...0,4 % марганца. Инструменты из углеродистых сталей обладают достаточной твердостью при комнатной температуре, но теплостойкость их невелика, так как при сравнительно невысоких температурах (200...250 °С) их твердость резко уменьшается.

Легированные инструментальные стали по своему химическому составу отличаются от углеродистых повы­шенным содержанием кремния или марганца, или нали­чием одного или нескольких легирующих элементов: хрома (увеличивает твердость, прочность, коррозионную стойкость материала, понижает его пластичность); нике­ля (повышает прочность, пластичность, ударную вязкость, прокаливаемость материала); вольфрама (повышает твердость и теплостойкость материала); ванадия (повышает твердость и прочность материала, способствует образо­ванию мелкозернистой структуры); кобальта (увеличи­вает ударную вязкость и жаропрочность материала); молибдена (повышает упругость, прочность, теплостой­кость материала). Для режущих инструментов исполь­зуются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами-лучшей закаливаемостью и прокаливаемостью, меньшей склон­ностью к короблению, но теплостойкость их практически равна теплостойкости углеродистых сталей 350...400 °С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназна­ченных для обработки на станках с низкими скоростями резания (мелкие сверла, развертки).

Быстрорежущие инструментальные стали. Из группы высоколегированных сталей для изготовления режущих инструментов используются быстрорежущие стали с высо­ким содержанием вольфрама, молибдена, кобальта, вана­дия. Современные быстрорежущие стали можно разде­лить на три группы.

К сталям нормальной теплостойкости относятся воль­фрамовые Р18, Р12, Р9 и вольфрамомолибденовые Р6М5, Р6МЗ, Р8МЗ (табл. 6.1). Эти стали имеют твердость в закаленном состоянии 63...66 НRС э, предел прочности при изгибе 2900...3400 МПа, ударную вязкость 2,7... 4,8 Дж/м 2 и теплостойкость 600...650 °С. Указанные марки сталей получили наиболее широкое распространение при изготовлении режущих инструментов. Они используются при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс. Иногда применяются быстрорежу­щие стали, дополнительно легированные азотом (Р6АМ5, Р18А и др.), которые являются модификациями обычных быстрорежущих сталей. Легирование азотом повышает режущие свойства инструмента на 20...30 %, твердость - на 1…2 единицы НRС э.


Стали повышенной теплостойкости характеризуются повышенным содержанием углерода - 10Р8МЗ, 10Р6М5; ванадия - Р12ФЗ, Р2МЗФ8, Р9Ф5; кобальта - Р18Ф2К5, Р6М5К5, Р9К5, Р9К10, Р9М4К8Ф, 10Р6М5Ф2К8 и др.

Твердость сталей в закаленном состоянии достигает 66...70 НRС э, они имеют более высокую теплостойкость (до 620...670 °С). Это дает возможность использовать их для обработки жаропрочных и нержавеющих сталей и сплавов, а также конструкционных сталей повышен­ной прочности и закаленных. Период стойкости инстру­ментов из таких сталей в 3…5 раз выше, чем из сталей Р18, Р6М5.

Табл. 3. Содержание легирующих элементов в быстрорежущих сталях, %

Стали высокой теплостойкости характеризуются пони­женным содержанием углерода, но весьма большим коли­чеством легирующих элементов - Bl1M7K23, В14М7К25, ЗВ20К20Х4Ф. Они имеют твердость 69...70 HRC Э, и тепло­стойкость 700....720 °С. Наиболее рациональная область их использования - резание труднообрабатываемых ма­териалов и титановых сплавов. В последнем случае период стойкости инструментов в 30…80 раз выше, чем из стали Р18, и в 8…15 раз выше, чем из твердого сплава ВК8. При резании конструкционных сталей и чугунов период стойкости возрастает менее значительно (в 3…8 раз).

В связи с острым дефицитом вольфрама в СССР и за рубежом разрабатываются безвольфрамовые инструмен­тальные материалы,в том числе быстрорежущие стали.

К таким сталям относятся маловольфрамовые Р2М5, РЗМЗФ4К5. Р2МЗФ8, А11РЗМЗФ2 и безвольфрамовая 11М5Ф (см. табл. 6.1). Эксплуатационные свойства указанных сталей близки к свойствам традиционных быстрорежущих сталей соответствующих групп.

Перспективным направлением в повышении качества быстрорежущих сталей является получение их методами порошковой металлургии. Стали Р6М5К5-П (П - по­рошковая), Р9М4К8-П, Р12МЗФЗК10-П и другие имеют очень однородную мелкозернистую структуру, хорошо шлифуются, меньше деформируются при термообработке, отличаются стабильностью эксплуатационных свойств. Период стойкости режущих инструментов из таких ста­лей возрастает до 1,5 раза. Наряду с порошковыми бы­строрежущими сталями хорошо зарекомендовали себя так называемые карбидостали, содержащие до 20 % TiC, которые по служебным характеристикам занимают про­межуточное место между быстрорежущими сталями и твердыми сплавами.

Твердые сплавы. Эти сплавы получают методами порошковой металлургии в виде пластин или коронок. Основными компонентами таких сплавов являются кар­биды вольфрама WC, титана TiC, тантала ТаС и ниобия NbС, мельчайшие частицы которых соединены посред­ством сравнительно мягких и менее тугоплавких кобальта или никеля в смеси с молибденом (табл. 6.2, 6.3).

Твердые сплавы имеют высокую твердость -88... 92 HRA (72...76 HRC Э,) и теплостойкость до 850... 1000 °С. Это позволяет работать со скоростями резания в 3…4 раза большими, чем инструментами из быстро­режущих сталей.

Применяемые в настоящее время твердые сплавы делятся:

1) на вольфрамовые сплавы группы ВК: ВКЗ, ВКЗ-М, ВК4, ВК6, ВК6-М, ВК6-ОМ, ВК8 и др. В условном обозна­чении цифра показывает процентное содержание кобаль­та. Например, обозначение ВК8 показывает, что в нем 8 % кобальта и 92 % карбидов вольфрама. Буквами М и ОМ обозначается мелкозернистая и особо мелко­зернистая структура;

2) на титановольфрамовые сплавы группы ТК:

Т5К10, Т15К6, Т14К8, ТЗОК4, Т60К6 и др. В условном обозначении цифра, стоящая после буквы Т, показывает процентное содержание карбидов титана, после буквы К - кобальта, остальное - карбиды вольфрама;

Табл. 4. Марки, химический состав и свойства вольфрамосодержащнх твердых сплавов


Табл. 5. Марки, химический состав и свойства безвольфрамовых твердых сплавов


3) на титанотанталовольфрамовые сплавы группы ТТК: ТТ7К12, ТТ8К6, ТТ20К9 и др. В условном обозна­чении цифры, стоящие после буквы Т, показывают процентное содержание карбидов титана и тантала, после буквы К - кобальта, остальное - карбиды вольфрама;

4) на безвольфрамовые твердые сплавы ТМ-1, ТМ-3, ТН-20, КНТ-16, ТС20ХН, состав которых приведен в табл. 6.3. Обозначения этой группы твердых сплавов условные.

Твердые сплавы выпускаются в виде стандартизо­ванных пластин, которые припаиваются, приклеиваются или крепятся механически к державкам из конструк­ционной стали. Выпускаются также инструменты, рабо­чая часть которых целиком выполнена из твердого спла­ва (монолитные).

Правильным выбором марки твердого сплава обеспе­чивается эффективная эксплуатация режущих инструмен­тов. Для конкретного случая обработки сплав выбирают исходя из оптимального сочетания его теплостойкости и прочности. Например, сплавы группы ТК имеют более высокую теплостойкость, чем сплавы ВК. Инструменты, изготовленные из этих сплавов, могут использоваться при высоких скоростях резания, поэтому их широко при­меняют при обработке сталей.

Инструменты из твердых сплавов группы ВК приме­няют при обработке деталей из конструкционных сталей в условиях низкой жесткости системы СПИД, при пре­рывистом резании, при работе с ударами, а также при обработке хрупких материалов типа чугуна, что обуслов­лено повышенной прочностью этой группы твердых спла­вов и невысокими температурами в зоне резания.

Такие сплавы используются также при обработке деталей из высокопрочных, жаропрочных и нержавеющих сталей, титановых сплавов. Это объясняется тем, что наличие в большинстве этих материалов титана вызывает повышенную адгезию со сплавами группы ТК, также содержащими титан. Кроме того, сплавы группы ТК имеют значительно худшую теплопроводность и более низкую прочность, чем сплавы ВК.

Введение в твердый сплав карбидов тантала или кар­бидов тантала и ниобия (ТТ10К8-Б) повышает его проч­ность. Поэтому трех- и четырехкарбидные твердые сплавы применяются для оснащения инструментов, работающих с ударами и по загрязненной корке. Однако температура теплостойкости этих сплавов ниже, чем у двухкарбидных. Из твердых сплавов с существенно улучшенной струк­турой следует отметить особомелкозернистые, применя­емые для обработки материалов с большой истирающей способностью. Сплавы ОМ обладают плотной, особо-мелкозернистой структурой, а также имеют малый (до 0,5 мкм) размер зерен карбидов вольфрама. Последнее обстоятельство позволяет затачивать и доводить инстру­мент, изготовленный из них, с наименьшими радиусами режущих кромок. Инструменты из сплавов этой группы применяются для чистовой и получистовой обработки деталей из высокопрочных вязких сталей с повышенной склонностью к наклепу.

Незначительное добавление в состав сплавов группы ОМ карбида тантала и кобальта способствует повыше­нию их теплостойкости, что позволяет использовать эти сплавы при изготовлении инструментов, предназначенных для черновой обработки деталей из различных сталей. Весьма эффективна замена карбидов тантала карбидами хрома . Это обеспечивает получение сплавов с мелкозер­нистой однородной структурой и высокой износостойко­стью. Представителем таких материалов является сплав ВК10-XOM .

Сплавы с низким процентным содержанием кобальта (ТЗОК4, ВКЗ, ВК4) обладают меньшей вязкостью и при­меняются для изготовления инструментов, срезающих тонкие стружки на чистовых операциях. Наоборот, спла­вы с большим содержанием кобальта (ВК8, Т14К8„ Т5К10) являются более вязкими и применяются при сня­тии стружек большого сечения на черновых операциях.

Работоспособность твердых сплавов значительно воз­растает при нанесении на них износостойких покры­тий.

Минералокерамика. Из современных инструменталь­ных материалов заслуживает внимание минералокерамика, которая не содержит дорогостоящих и дефицитных элементов. Основу ее составляют оксиды алюминия АOз с небольшой добавкой (0,5...1 %) оксида магния MgO. Высокая твердость минералокерамики, теплостой­кость до 1200°С, химическая инертность к металлам, сопротивление окислению во многом превосходят эти же параметры твердых сплавов. Однако минералокерамика уступает этим сплавам по теплопроводности, имеет более низкий предел прочности на изгиб.

Современная минералокерамика, созданная в СССР и за рубежом, по прочности приближается к наиболее износостойким твердым сплавам. Минералокерамику на основе оксида алюминия можно разделить на три группы:

1) чисто оксидная керамика (белая), основу которой составляет оксид алюминия с незначительными приме­сями (АlОз - до 99,7 %);

2) керамика, представляющая собой оксид алюминия с добавлением металлов (титан, ниобий и др.);

3) оксидно-карбидная (черная) керами­ка - оксид алюминия с добавлением карбидов тугоплав­ких металлов (титана, вольфрама, молибдена) для повы­шения ее прочностных свойств и твердости.

Отечественная промышленность в настоящее время выпускает оксидную керамику ЦМ-332, ВО-13 и оксидно-карбидную ВЗ, ВОК-60, ВОК-63, в состав которой входит до 40 % карбидов титана, вольфрама и молибдена. Наряду с материалами на основе оксида алюминия выпускается материал на основе нитрида кремния - силинит-Р и кортинит ОНТ-20 (с добавками оксидов алюминия и неко­торых других веществ). Физико-механические свойства режущей минералокерамики приведены в табл. 6.4.

Высокие режущие свойства инструментов из минерало­керамики проявляются при скоростной обработке сталей и высокопрочных чугунов, причем чистовое и получистовое точение и фрезерование повышает производительность обработки деталей до 2 раз при одновременном возраста­нии периодов стойкости инструментов до 5 раз по сравнению с обработкой инструментами из твердого сплава.

Минералокерамика выпускается в виде неперета­чиваемых пластин, что существенно облегчает условия ее эксплуатации.


Табл. 6. Физико-механические свойства режущей минералокерамики


История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной, позволило увеличить скорость резания в 2...3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего увеличить их быстроходность и мощность. Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, чтобы в течение длительного времени срезать стружку. Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания. Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость). Режущая часть инструмента должна обладать большой износостойкостью в условиях высоких давлений и температур.

Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок либо поломка инструмента, особенно при их небольших размерах.

Инструментальные материалы должны обладать хорошими технологическими свойствами, т.е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми.

В настоящее время для изготовления режущих элементов инструментов применяются инструментальные стали (углеродистые, легированные и быстрорежущие), твердые сплавы, минералокерамические материалы, алмазы и другие сверхтвердые и абразивные материалы.

ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ

Режущие инструменты, изготовленные из углеродистых инструментальных сталей У10А, У11А, У12А, У13А, обладают достаточной твердостью, прочностью и износостойкостью при комнатной температуре, однако теплостойкость их невелика. При температуре 200-250 "С их твердость резко уменьшается. Поэтому они применяются для изготовления ручных и машинных инструментов, предназначенных для обработки мягких металлов с низкими скоростями резания, таких, как напильники, мелкие сверла, развертки, метчики, плашки и др. Углеродистые инструментальные стали имеют низкую твердость в состоянии поставки, что обеспечивает их хорошую обрабатываемость резанием и давлением. Однако они требуют применения при закалке резких закалочных сред, что усиливает коробление инструментов и опасность образования трещин.

Инструменты из углеродистых инструментальных сталей плохо шлифуются из-за сильного нагревания, отпуска и потери твердости режущих кромок. Из-за больших деформаций при термической обработке и плохой шлифуемости углеродистые инструментальные стали не используются при изготовлении фасонных инструментов, подлежащих шлифованию по профилю.

С целью улучшения свойств углеродистых инструментальных сталей были разработаны низколегированные стали. Они обладают большей прокаливаемостью и закаливаемостью, меньшей чувствительностью к перегреву, чем углеродистые стали, и в то же время хорошо обрабатываются резанием и давлением. Применение низколегированных сталей уменьшает количество бракованных инструментов.

Область применения низколегированных сталей та же, что и для углеродистых сталей.

По теплостойкости легированные инструментальные стали незначительно превосходят углеродистые. Они сохраняют высокую твердость при нагреве до 200-260°С и поэтому непригодны для резания с повышенной скоростью, а также для обработки твердых материалов.

Низколегированные инструментальные стали подразделяются на стали неглубокой и глубокой прокаливаемости. Для изготовления режущих инструментов используются стали 11ХФ, 13Х, ХВ4, В2Ф неглубокой прокаливаемости и стали X, 9ХС, ХВГ, ХВСГ глубокой прокаливаемости.

Стали неглубокой прокаливаемости, легированные хромом (0,2-0,7%), ванадием (0,15-0,3%) и вольфрамом (0,5-0,8%) используются при изготовлении инструментов типа ленточных пил и ножовочных полотен. Некоторые из них имеют более специализированное применение. Например, сталь ХВ4 рекомендуется для изготовления инструментов, предназначенных для обработки материалов, имеющих высокую поверхностную твердость, при относительно небольших скоростях резания.

Характерной особенностью сталей глубокой прокаливаемости является более высокое содержание хрома (0,8-1,7 %), а также комплексное введение в относительно небольших количествах таких легирующих элементов, как хром, марганец, кремний, вольфрам, ванадий, что существенно повышает прокаливаемость. В производстве инструментов из рассматриваемой группы наибольшее применение находят стали 9ХС и ХВГ. У стали 9ХС наблюдается равномерное распределение карбидов по сечению. Это позволяет использовать ее для изготовления инструментов относительно больших размеров, а также для резьбонарезных инструментов, особенно круглых плашек с мелким шагом резьбы. Вместе с тем сталь 9ХС имеет повышенную твердость в отожженном состоянии, высокую чувствительность к обезуглероживанию при нагреве.

Содержащие марганец стали ХВГ, ХВСГ мало деформируются при термической обработке. Это позволяет рекомендовать сталь для изготовления инструмента типа протяжек, длинных метчиков, к которым предъявляются жесткие требования относительно стабильности размеров при термической обработке. Сталь ХВГ имеет повышенную карбидную неоднородность, особенно при сечениях, больших 30...40 мм, что усиливает выкрашивание режущих кромок и не позволяет рекомендовать ее для инструментов, работающих в тяжелых условиях. В настоящее время для изготовления металлорежущих инструментов применяются, быстрорежущие стали. В зависимости от назначения их можно разделить на две группы:

1) стали нормальной производительности;

2) стали повышенной производительности.

К сталям первой группы относятся Р18, Р12, Р9, Р6МЗ, Р6М5, к сталям второй группы – Р6М5ФЗ, Р12ФЗ, Р18Ф2К5, Р10Ф5К5, Р9К5, Р9К10, Р9МЧК8, Р6М5К5 и др.

В обозначении марок буква Р указывает, что сталь относится к группе быстрорежущих. Цифра, следующая за ней, показывает среднее содержание вольфрама в процентах. Среднее содержание ванадия в стали в процентах обозначается цифрой, проставляемой за буквой Ф, кобальта -цифрой, следующей за буквой К.

Высокие режущие свойства быстрорежущей стали обеспечиваются за счет легирования сильными карбидообразующими элементами: вольфрамом, молибденом, ванадием и некарбидообразующим кобальтом. Содержание хрома во всех быстрорежущих сталях составляет 3,0-4,5 % и в обозначении марок не указывается. Практически во всех марках быстрорежущих сталей допускается серы и фосфора не более 0,3% и никеля не более 0,4%. Существенным недостатком этих сталей является значительная карбидная неоднородность, особенно в прутках большого сечения.

С увеличением карбидной неоднородности прочность стали, снижается, при работе выкрашиваются режущие кромки инструмента, и снижается его стойкость.

Карбидная неоднородность выражена сильнее в сталях с повышенным содержанием вольфрама, ванадия, кобальта. В сталях с молибденом карбидная неоднородность проявляется в меньшей степени.

Быстрорежущая сталь Р18, содержащая 18% вольфрама, долгое время была наиболее распространенной. Инструменты, изготовленные из этой стали, после термической обработки имеют твердость 63-66 HRС Э, красностойкость 600 °С и достаточно высокую прочность. Сталь Р18 сравнительно хорошо шлифуется.

Большое количество избыточной карбидной фазы делает сталь Р18 более мелкозернистой, менее чувствительной к перегреву при закалке, более износостойкой.

Ввиду высокого содержания вольфрама сталь Р18 целесообразно использовать только для изготовления инструментов высокой точности, когда стали других марок нецелесообразно применять из-за прижогов режущей части при шлифовании и заточке.

Сталь Р9 по красностойкости и режущим свойствам почти не уступает стали Р18. Недостатком стали Р9 является пониженная шлифуемость, вызываемая сравнительно высоким содержанием ванадия и присутствием в структуре очень твердых карбидов. Вместе с тем сталь Р9, по сравнению со сталью Р18, имеет более равномерное распределение карбидов, несколько большую прочность и пластичность, что облегчает ее деформируемость в горячем состоянии. Она пригодна для инструментов, получаемых различными методами пластической деформации. Из-за пониженной шлифуемости сталь Р9 применяют в ограниченных пределах.

Сталь Р12 равноценна, по режущим свойствам стали Р18. По сравнению со сталью Р18 сталь Р12 имеет меньшую карбидную неоднородность, повышенную пластичность и пригодна для инструментов, изготовляемых методом пластической деформации. По сравнению со сталью Р9 сталь Р12 лучше шлифуется, что объясняется более удачным сочетанием легирующих элементов.

Стали марок Р18М, Р9М отличаются от сталей Р18 и Р9 тем, что они в своем составе вместо вольфрама содержат до 0,6-1,0 %"молибдена (из расчета, что 1 % молибдена заменяет 2 % вольфрама). Эти стали имеют равномерно распределенные карбиды, но более склонны к обезуглероживанию. Поэтому закалку инструментов из сталей необходимо проводить в защитной атмосфере. Однако по основным свойствам стали Р18М и Р9М. не отличаются от сталей Р18 и Р9 и имеют ту же область применения.

Вольфрамомолибденовые стали типа Р6МЗ, Р6М5 являются новыми сталями, значительно повышающими как прочность, так и стойкость инструмента. Молибден обусловливает меньшую карбидную неоднородность, чем вольфрам. Поэтому замена 6...10 % вольфрама соответствующим количеством молибдена снижает карбидную неоднородность быстрорежущих сталей примерно на 2 балла и соответственно повышает пластичность. Недостаток молибденовых сталей заключается в том, что они имеют повышенную чувствительность к обезуглероживанию.